
Also in this issue:

Evaluating Microprocessor Performance

A Capability-based Microprocessor

MICRQ/
Is he hearing
a familiar voice?
Analyzing and Synthesizing Speech

\

MICRQ,
Is he hearing
a familiar voice?
Annli/zinn anil Sunlheahini) Speech

On The Cover
Will scientists be able to synthesize
human speech so clearly we’ll be able
to understand it as easily as we do the
voices on our stereo records and
tapes? They’re trying and—interest¬
ingly enough—they’re using PCs to
analyze this complex task. Turn to p. 4
for more information.

STAFF
Editor and Publisher
True Seaborn

Managing Editor
Marie English

Assistant Editor
Christine Miller

Assistant to the Publisher
Pat Paulsen

Advertising Director
Dawn Peck

Art Director
Jay Simpson

Design and Production
Tricia Hayden

Membership Manager
Christina Champion

Advertising Coordinators
Heidi Rex, Marian Tibayan

Reader Service
Marian Tibayan

Published by the Computer Society of the IEEE

Departments

From the Editor-in-Chief ^

MicroLaw
Software copyright developments 81

MicroReview
CD ROM, desktop publishing 83

MicroStandards 85

MicroNews
Superconductors 86

New Products 90

Product Summary 94

Calendar 95

Advertiser/Product Index; Change-of-Address form 96

Reader Service Card; Reader Interest Card;
Subscription Card 96A

Feature Articles

A Personal Computer-based Speech Analysis and Synthesis
System
Yousif A. El-Imam

An IBM PC XT enhanced with speech boards and added memory permits
researchers to experiment in language synthesis before final commitment to
a target speech synthesizer.

AMORE, Address Mapping with Overlapped Rotating Entries
G. J. Dekker and A. J. van de Goor

A memory management unit that supports demand paging is implemented
with standard logic and fast-access RAM chips, resulting in much faster ad¬
dress translation than that provided by the standard Motorola MC68451 MMU.

The Architecture of a Capability-based Microprocessor System
Paolo Corsini and Lanfranco Lopriore

By implementing a capability-oriented addressing scheme, tagged storage,
and a single-level-store approach to memory management, and by providing
hardware support for multitasking, this architecture reduces the semantic gap.

Improved Control Acquisition Scheme for the IEEE 896
Futurebus
D. Matthew Taub

An added preemption facility clearly improves earlier schemes for im¬
plementing this backplane bus used with 32-bit microprocessors.

A Synthetic Instruction Mix for Evaluating Microprocessor
Performance
John C. McCollum and Tat-Seng Chua

Need to rate the performance of that new microprocessor you’re interested
in? Here’s a simple, easy way to do just that.

Circulation: IEEE MICRO (ISSN 0272-1732) is published bimonthly by the Computer Society of the IEEE: IEEE Headquarters, 345 East 47th St., New York, NY 10017; Computer Society
West Coast Office, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-2578. Annual subscription: $17 in addition to Computer Society or any other IEEE society member dues; $25 for
members of other technical organizations. This journal is also available in microfiche form.

Postmaster Send address changes and undelivered copies to IEEE MICRO, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-2578. Second class postage is paid at New York, NY, and at ad¬
ditional mailing offices.

Copyright and reprint permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of US Copyright Law for private use of
patrons: those post-1977 articles that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 29 Con¬
gress St., Salem, MA 01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. For other copying, reprint, or republication permission,
write to Reprints, IEEE MICRO, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-2578. All rights reserved. Copyright © 1987 by the Institute of Electrical and Electronics Engineers,
Inc.

Editorial: Unless otherwise stated, bylined articles and descriptions of products and services in New Products, Product Summary, MicroReview, MicroNews, and MicroLaw, reflect the
author’s or firm’s opinion; inclusion in this publication does not necessarily constitute endorsement by the IEEE or the Computer Society of the IEEE. Send editorial correspondence to
IEEE MICRO, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-2578. All submissions are subject to editing for style, clarity, and space considerations.
IEEE MICRO subscribes to The Computer Press Association’s code of professional ethics.

June 1987 1

Q:
Involved with Bus/Board Problems and Products?

A:
The U.K. Bus/Board Users Show & Conference!

^ 13/14 October, 1987 ^
—-— Excelsior Hotel, Heathrow, London —-—

Conference Chairman: Dr. Paul Borrill, Spectra-Tek, Ltd.

• CHARACTERISTICS: A highly-concentrated technical forum with relevant
tutorial exhibits for designers, developers, specifiers and systems
integrators involved in bus architecture and board-level applications
and usage.

• TECHNICAL SPECIFICATIONS: Technical sessions and seminars on
subjects such as: backplanes • interfaces • real-time (Unix or Kernels)
• system architecture, I/O applications, high-speed processing • tools
for designers • shared memory • specific bus applications.

EXHIBIT PRODUCT CATEGORIES

Board Manufacturers • Systems Manufacturers • Packaging • Card
Cages • Connectors • Surface Mount Devices • Software

BUS CATEGORIES

PC • Multibus I • Multibus II • Versabus • O-bus • NuBus • VMEbus •
Futurebus • STD Bus • S-100 Bus • G-64 & G-96 • Unibus • Cimbus •
Exorbus • CAMAC • AMP • SMP • FASTBUS • STE Bus • l2C • BITBUS

• c-44 • SCSI • Proprietary • and more!

For more information: Telephone or write: Roger Sherman, (Buscon u.k. coordinator),
Overseas Trade Show Agencies, Ltd., 11 Manchester Square, London W1M5AB
• Phone: 01-487-2983 • Telex: 24591 Montex G • Fax (USA): 213 402 8814

BUSCON EUROPEAN BUSINESS TRAVEL PACKAGE AVAILABLE
Designed for U.S. Bus/Board manufacturers, this package will take you to
London, Amsterdam and Munich, October 10 thru 22,1987. The itinerary includes:
• BUSCON UK Conference • SYSTEMS show • Private meetings in each city with
government & industry leaders and the Press • Full staff support • Regularly
scheduled British Airways flights • First Class hotels, breakfast, transfers,
taxes • Customized tours.

This is a unique opportunity to travel with your peers to three important
European business capitals. There is no way you can duplicate this package on

your own.
Contact Anne Weber in California at 213-402-1610 for details, no later than July 10th.

Department

From the
Editor-in'Chief
SJ replies
anr hanks for the extra issue of

IEEE Micro. I will actively en¬
courage others to join the

Computer Society.” SJ, Austin, TX.
After receiving SJ’s note, I spoke with

him by telephone. He felt that his time
constraints prohibited him from renew¬
ing IEEE Micro right now. However, he
does continue to receive Computer and
IEEE Software.

Mailbag
In addition to SJ’s response, there were

34 cards in the mailbag. So far only four
responses have been received on the April
TRON issue. The remainder refer to
February or earlier:

“Excellent issue...especially BTRON.”
R.W., Decatur, AL

“Best issue in the last three years (at least).
The TRON project is something we all
ought to know more about.” J.L., Min¬
neapolis, MN

“Too much space for TRON...wasted
issue...Amo’s (Peel) paper excellent and
useful.” D.T., Fairfax, VA

“Liked MicroLaw and New Products
.. .wasn’t interested in TRON.” D.T.,
Lexington, KY

“I liked all the papers....” P.A.,
Khorasan, Iran

“...issue on multiprocessing was very
good.” G.S., Bombay, India

“Liked DSPs.” C.M., Barton, Australia

“Liked the practical aspects of DSPs.”
A.B., Stevenage, UK

“DSP issue, excellent articles.” E.L.,
Nedlands, Australia

“Liked 1987 editorial calendar.” C.G.,
Buenos Aires, Argentina

“Liked DSP56000 and ADSP2100 ar¬
ticles.” Ramallah, Israel

“Loved the letter from Fletcher J.
Buckley!” B.S., Berkshire, UK

“(lengthy comment)...I would like (the
usual): more articles, more often.” I.S.,
Cambridge, MA

“I like the new MicroStandards, but

let’s have more on objectives and the
status of standards.” B.W., North
Hollywood, CA

“MicroLaw very lucid.” G.G., Port
Angeles, WA (During my entire associa¬
tion with this magazine, no aspect has
received more consistently favorable
comments than MicroLaw. We are in¬
deed fortunate to have a contributor like
Dick Stern.—JF)

“Oops! Photos on page 88 are reversed.”
A.W. Lewisburg, PA (Yes, you are cor¬
rect. You have sharp eyes. You are not
alone.— JF)

“I liked the new format, more color,
MicroNews, and parallel processors. Pic¬
tures on page 88 reversed.” K.S., Acton,
MA

“I liked MicroLaw and this issue.”
J.A., Fairfax, VA

“I liked the article on ‘FFT Implementa¬
tion Alternatives.’” H.D. Brampton,
Canada

“1 liked ‘FFT Implementation Alter¬
natives.’” S.G., Newcastle, UK

“I liked MicroStandards and Letters to
the Editor.” J.G., Fishkill, NY

“The FFT article outdated.” Z.G.,
Belfast, UK

“I liked all of it (February issue).”
A.B., Mexico City, Mexico

Final note: With this issue George S,
Carson completes his terms on the
IEEE Micro editorial board.

Carson did an excellent job not only in
reviewing articles but also in chairing
our editorial board search committee.
Our new assistant editor, Christine
Miller, joins our staff in Los Alamitos
this month. Her biography appears on
page 88.

Best regards,

'MICRO;
Editor-in-Chief: James J. Farrell III,

VLSI Technology Incorporated*

Associate Editor-in-Chief:

Joe Hootman, University of North Dakota

Editorial Board:

Shmuei Ben-Yaakov,

Ben Gurion University of the Negev

Dante Del Corso,

Politecnico di Torino, Italy

John Crawford,

Intel Corporation

Stephen A. Dyer,

Kansas State University

K.-E. Grosspietsch,

GMD, Germany

David B. Gustavson,

Stanford Linear Accelerator Center

Victor K. L. Huang,

AT&.T Information Systems

Barry W. Johnson,

University of Virginia

David K. Kahaner,

National Bureau of Standards

G. Jack Lipovski,

University of Texas

Kenneth Majithia,

IBM Corporation

Richard Mateosian

Marlin H. Mickle,

University of Pittsburgh

Varish Panigrahi,

Digital Equipment Corporation

Ken Sakamura,

University of Tokyo

Michael Smolin,

Smolin & Associates

Richard H. Stern

Yoichi Yano,

NEC Corporation

*Submit six double-spaced copies of ail articles and

special-issue proposals to James J. Farrell III, 10220

South 51st Street, Phoenix, AZ 85044; (602) 893-8574;

Compmaii+ j.farrell.

Magazine Advisory Committee
Michael Evangelist (chair),

Vishwani D. Agrawal, James J. Farrell III,
Ted Lewis, David Pessel, True Seaborn,
Bruce D. Shriver, John Staudhammer

Publications Board
J.T. Cain (chair)

Vishwani D. Agrawal, J. Richard Burke,
Gerald L. Engel, Michael Evangelist,
James J. Farrell III, Lansing Hatfield,
Ronald G. Hoelzeman, Ted Lewis,

Ming T. Liu, Ez Nahouraii, David Pessel,
C.V. Ramamoorthy, Vincent Shen,

Bruce D. Shriver, John Staudhammer,
Steven L. Tanimoto

June 1987 3

4- +
+

4- +
+

+ +
+

+ +

+ + + + + + + + + |
+ + + + + + + + + 4

+ + 4-4-4-4-4-4- +
4- + 4-4-4-4-4-4-4-4
4-4-4-4-4-4- + + +

4-4-4-4- + 4- + 4-4-4
4-4--E4-4-4-4- + + An IBM PC XT enhanced with

speech boards and added memory

permits researchers to experiment

in language synthesis before

final commitment to a target

speech synthesizer.

T—T—T—+—T—T—T—T—^T~
4- + 4-4- + 4- + 4-4

+ + 4-4- + 4- + + 4-
4- + 4- + + 4- + 4-4

4-4-4- + 4-4-4- + 4-
4-4-4- + + 4- + 4-4

+ + 4- + + 4-4- + +

FEATURE

A Personal Computer-based

Speech Analysis and Synthesis System
Yousif A. El-Imam, IBM Kuwait Scientific Center

Speech analysis and reproduction is a popular
theme in research today, involving phoneticists,
computer engineers, and signal-processing and

speech acoustics scientists. These studies attempt to
understand the vocal sounds and patterns inherent in
languages so that speech may be recreated syntheti¬
cally, in as normal a fashion as possible.

Personal and mainframe computers equipped with
a general-purpose signal processor allow researchers
to segment, analyze, and synthesize speech for experi¬
ments before final commitment to a target syn¬
thesizer. Here we discuss a system centered on the
IBM PC XT. The system, developed at the IBM
Kuwait Scientific Center as part of a research project
in speech synthesis, can be used in a stand-alone
mode, or it can be enhanced by access to a main¬
frame computer.

Synthesizing a language from discrete units—such
as short phonetic segments like allophones and
demisyllables or long segments like words and
phrases—requires facilities capable of carrying out
several functions:

• digitization, quantization, and acquisition of
speech signals;

• isolation of synthesis units from normal speech
utterances;

• verification of the contextual variations occur¬
ring in the synthesis units during normal continuous
speech;

• analysis and encoding (with suitable models) of
the synthesis units; and

• development and use of an adequate synthesis
strategy.

The use of a computer for processing a speech
signal requires, first of all, that the signal be digi¬
tized, quantized, and acquired into computer memory.
The isolation of synthesis units requires that the input
utterance data be edited and segmented by some
computerized facilities. Contextual variations must be
verified by a phoneticist with perceptive judgment
who can define each variation. The phoneticist,
knowing the phonetic description of the language and
the justification of the phoneticist view, is assisted by
computer or other methods, such as the verification
of the allophones of the basic phonemes and/or the
study of speech prosody changes in pitch, stress, and
rhythm. (A short glossary on the next page defines
some of the specialized speech terminology.)

Speech analysis and encoding identifies the
inherent temporal variables of the model used to
represent the human speech production mechanism.
(See the box on page 6 for general information
on the speech process.) Speech must also be trans¬
formed into a coded, compressed, parametric form to
save computer memory. One of two approaches,
briefly described here, can be used to model the
speech production process.

• The acoustical domain approach uses models
whose parameters are measured from data of actual
output speech. Model parameters are divided into
source parameters (such as pitch, gain, and so on)
and vocal tract parameters. These latter parameters
reflect the time dependence of the spectral properties
of the vocal tract and include variables such as the
formants (resonance frequencies) of the vocal
cavities1’2 or linear predictive codes (LPC) of the
discrete-time, time-varying model of the tract.3-5

4 0272-1732/87/0600-0004$01.00 © 1987 IEEE IEEE MICRO

t--t-1- + -»--t--»--t-
+

b +
+

»- +
+

1- +

• The articulatory approach models the dynamics
of the vocal tract directly, rather than modeling its
acoustical output. This approach considers physio¬
logical parameters such as the positions of the tongue
tip and the rounding of the lip. This approach to
analyzing speech signals requires considerable com¬
putational effort in measuring the model
parameters.6

Speech synthesis techniques use speech production
models and a synthesis strategy (rules that use contex¬
tual knowledge about the synthesis units) to produce
smooth parameter tracks for the target speech syn¬
thesizer. (The box on page 7 explains the methods of
synthesizing speech.) With this data the synthesizer
can produce continuous, intelligible, and possibly
natural-sounding synthetic speech. The quality of the
final synthetic speech depends on all the stages of the
synthetic speech development process; neat speech
editing and segmentation, accurate analysis and en¬
coding, and complete strategy rules present better
sounds.

Voluminous processing is required to measure and
encode the speech model parameters. Often the num¬
ber of synthesis units needed for a language can be
very large. (Arabic, for example, requires on the

Glossary of Speech Terms

An allophone is one of two or more variants
of the same phoneme. (See phoneme below.)

A demisyllable is part of a syllable that consists
of a consonant and part of a vowel.

A diphone is a phonetic segment that starts
from the center of one phoneme and ends at the
center of a neighboring phoneme.

A formant is any of several resonance bands
held to determine the phonetic quality of a
vowel or speech sound.

Fricative describes a consonant characterized
by frictional passage of the expired breath through
a narrowing at some point in the vocal tract.

The elongated space between the vocal cords
is called the glottis.

Intonation is the rise and fall in pitch of the
voice in speech.

Orthographies is the part of language study that
concerns letters and spelling.

Phonemes are the smallest units of speech that
serve to distinguish one utterance from another
in a language or dialect; for example, the \p\ of
pat and the \f\ of fat are distinctive in the
English language.

Phonetics is the system of speech sounds of a
language or group of languages as well as the
study and systematic classification of the sounds
made in spoken utterance.

Pitch is the difference in the relative
vibration frequency of the human voice
that contributes to the total meaning of
speech.

Prosody is the study of versification,
especially the systematic study of metrical
structure.

The ordered recurrent alternation of strong
and weak elements in the flow of sound and
silence in speech is known as rhythm.

Stress describes the intensity of utterance
given to a speech sound, syllable, or word pro¬
ducing loudness.

The membrane in the mouth resembling a veil
or curtain is known as the vellum; it is also called
the soft palate. /

White noise is a term defining the random or
impulsive noise that has a flat frequency spec¬
trum at the frequency range of interest.

A speech window is a time frame of speech.

June 1987 5

Speech Analysis

order of 1500 demisyllabic units using a syllabic ap¬
proach for synthesis. In comparison, the English lan¬
guage requires on the order of a thousand synthesis
units using a diphone approach.) Much repetitive
editing and segmentation is, therefore, required.

Often, implementing the synthesis strategy rules calls
for very large and complex programs. Most of the
time the complete process (from digitization and seg¬
ment selection to synthesizing an utterance) must be

repeated several times to produce a satisfactory
synthesis.

Because of these considerations, good, reliable,
versatile, and fast computer-based techniques become
essential tools for developing the parameter codes to
be used for speech synthesis.

Approaches and motivations. In the past synthetic
speech was developed either by capable organizations

in charge of speech development service bureaus or
through the use of large speech analysis and synthesis

packages that required the power of a minicomputer.
A potential customer of the bureau would make

speech recordings, then the bureau would develop
and test speech parameters on a target synthesizer.

Few minicomputer-based speech research and de¬
velopment systems or general-purpose digital signal
processing software programs have been developed.7-9

Such systems and software are very powerful, but
their use is limited to people with access to speech

laboratories equipped with minicomputers.

In recent years with the development of microcom¬
puter and microprocessor technology, many powerful
microcomputers (in terms of processing speed and

storage capabilities) have emerged. New support
hardware (such as directly pluggable boards) allows

easy attachment of the more unusual peripherals to
personal computers. The personal computer is now
very versatile in many new application areas.

Motivated by the advances in the technology of the
personal computer and the microprocessor and the

The Speech Production Process
and the Speech Waveform

The continuous movement of the articulators

(tongue, lips, jaws, and velum) inside the vocal tract
produces the sounds that create speech. The vocal
tract is formed of two cavities, the oral and the

nasal.

• The oral cavity extends from the glottis to the
lips. During the production of speech sounds, this
cavity also forms a nonuniform area that depends

on the positions of the articulators.
• The nasal cavity extends to the nostrils and is

formed by lowering the velum. The nasal cavity can
become acoustically coupled to the oral cavity to
produce the nasal sounds of speech.

The vocal tract is excited by the action of the lung
muscles forcing air through two small muscular flaps
at the larynx called the vocal cords. During the pro¬
duction of voiced sounds, the vocal cords vibrate to
modulate the air from the lungs, producing quasi-
periodic pulses of air. The period is the pitch, and
the frequency of vibration of the vocal cords is the

fundamental frequency of the sound produced.
Fourier analysis of the quasiperiodic pulses of air

shows a discrete harmonic frequency structure of
decaying amplitudes. During the production of

voiceless sounds, the vocal cords are at rest and the
excitation source is moved (from the larynx) to the
point of constriction along the oral cavity. The con¬
striction produces turbulent air flow and the excita¬

tion, thus produced, is measured as a broadband
noise. During the production of plosive sounds, a
complete closure forms somewhere along the oral
cavity, allowing air pressure to build behind it. The

suddenly released air pressure results in a very short

burst of fricative noise.
No matter which excitation is used, the frequency

spectrum of the output speech waveform is shaped
by the frequency selectivity of the vocal tract. The
vocal tract resonates at certain frequencies called

the formants. The number and values of the for¬
mants depend on the area function (cross-sectional
area as a function of distance along the tract and
time) of the vocal tract.

In linear system theory, the vocal tract can be
viewed as a time-varying linear system (or filter24)
whose parameters are assumed constant over a
short analysis period. During voiced sound produc¬
tion, the filter is excited by periodic pulses; during
unvoiced sound production, the filter is excited by
white noise. The filtering action of the vocal tract

produces an output speech waveform of very com¬
plex nature. Frequency domain methods are,
therefore, natural means for analyzing such a signal.

Figure A depicts the speech production process.
Figure B shows a speech signal of an Arabic vowel
(voiced sound segment) and Figure C, a frequency
response of the oral cavity during the production of
the vowel.

6 IEEE MICRO

Speech Synthesis Methods

Speech can be synthesized by either of two
methods: synthesis by analysis (also called

analysis/synthesis) or constructive synthesis.22 Both

methods use a set of synthesis units from which

synthetic speech can be generated.
In the synthesis-by-analysis approach, the syn¬

thesis units are long segments of speech such as
words, phrases, or even sentences. The synthesis-

by-analysis system encodes the acoustical represen¬

tation of the units to achieve varying degrees of

speech data compression:

• a set of parameters obtained under a technique

called linear predictive coding and
• direct waveform coding such as the Mozer

method22 and the adaptive delta modulation23

techniques.

Synthesis-by-analysis methods are characterized by

the ability to generate naturally sounding speech,

but they are expensive because they must store

many synthesis units.
Constructive-synthesis methods use synthesis

units that are discrete phonetic sound segments

such as allophones, diphones, demisyllables, etc.

Every human language has its own set of such
sounds. The constructive-synthesis system must be

capable of creating an inventory of such sound

segments, suitably encoding them, and generating

synthetic speech. These systems are characterized
by their ability to generate an unlimited vocabulary

of synthetic speech with less storage requirements
than systems based on the synthesis-by-analysis

method. However, the quality of the synthetic

speech is not as good.

Figure A. The speech production model. Figure C. Frequency response of the oral cavity

during vowel production.

June 1987 7

Speech Analysis

need for simplifying and cutting down the cost and
effort that goes into developing synthetic speech,
some organizations have chosen to develop complete
personal computer-based speech development systems
(hardware and software).10 Others have chosen to de¬
velop complete microprocessor-based speech devel¬
opment stations.11 Still others have chosen to adapt
already existing general-purpose signal processing
packages to certain brands of personal computers.12

Here we describe a PC-based speech development
and research system and compare it, as far as possi¬
ble, to similar systems reported in the literature. The
system can be used in a stand-alone mode or linked
to a host computer in three domains of applications
involving speech processing:

• An experimental research system for synthesizing
a language from short or long phonetic segments
such as allophones, diphones, demisyllables, words,
and short phrases. For this purpose the system pro¬
vides all the needed functions, from digitizing the
speech to generating synthetic speech by a simulated
LPC synthesizer.

• A tool for conducting language-dependent
studies such as prosodic features and the verification
of the contextual variations in the synthesis units.
(Verification of the allophones of the Arabic lan¬
guage is an example.)

• A development tool for generating parameter
codes (LPC or formants) that eventually could be
adapted to a specific target synthesizer.

System configuration
As can be seen in Figure 1, the system we describe

is based on an IBM PC XT computer with options
and accessories: a 256K user RAM; a 360K floppy
diskette drive; an IBM France Scientific Center
speech board (FSCB);13’14 a Techmar Labmaster
board;15 an IBM graphics adapter/display; an IBM
expansion unit with two optional lOM-byte hard
disks; and an optional IBM 3278 emulation board.

The FSCB board processes the input speech signal.
A tenth-order, elliptical, switched-capacitor, low-pass
filter initially filters the (analog) speech. The cutoff
frequency of the filter varies, but in this implementa¬
tion we keep it set at 4 kHz. A 12-bit analog-to-
digital converter operating at a 10-kHz sample rate
digitizes the filtered speech. The FSCB board com¬
putes—on a window basis (one window equals 12.8
ms of speech or 128 speech samples) in real time—
several short-time speech parameters such as energy,
zero-crossing rate, and pitch. (See the accompanying
box for a description of the windowing process.)

The Tecmar Labmaster Board performs the final
processing of the output speech signal. A 12-bit
digital-to-analog converter operating at a 10-kHz
sample rate changes the analog signal to digitized
speech. The signal is filtered by a sixth-order, ellip¬
tical, switched-capacitor, low-pass filter. As on the
FSCB board, the filter cutoff frequency is variable
but set to 4 kHz here. The output of the filter is
coupled through a lOOk-ohms audiotape device to the
audio output subsystem (preamplifier, power ampli¬
fier, cassette recorder, and speakers). A Model 3278.3
graphics display screen supplements the IBM 4341/2
mainframe host computer. An IBM 3278 emulation
board and an emulation program connect the PC XT
and the host.

Audio
input

Figure 1. System
configuration.

8 IEEE MICRO

Short-time Analysis and
Speech Windowing

By the nature of the speech production process,
the speech signal can be viewed as a signal whose

properties vary with time. The speech production
process was modeled (in the box on page 7) by a
time-varying, discrete-time system. The parameters
of such a model can be assumed to be constant
over a short-time analysis interval. This constancy

makes short-time analysis a natural way to measure
the time dependency of the speech production

process.

There are two types of short-time parameters:
time-domain parameters such as the short-time
energy, pitch, and zero-crossing rates; and the
autocorrelation function and frequency domain
parameters such as the short-time Fourier transform

and the LPC coefficients.
To be able to conduct short-time analysis on the

speech signal, we must see that the signal is win¬
dowed by an appropriate window of appropriate
length. Mathematically, the windowing process can
be viewed as a convolution of a transformed ver¬
sion of the speech signal with the window as shown

by the following equation:

Q„ = £ T[X(m)]w(n-m) (A)
m = -<x

where T[x(m)] is a linear or nonlinear transforma¬
tion of the sequence x(m), and w(n) is a finite-
duration window positioned at time index n.

Two types of windows are in common use for
short-time analysis: a Hamming window, whose im¬

pulse response is given by

h(n)=0M - 0.46 cos[2 ir n/ (TV— 1)],
0 < n < N-1 (B)

= 0 otherwise

and a rectangular window of impulse response

given by

h(n) = 1 0 < n < N-1 ^

= 0 otherwise

where N is the window length in speech samples.
Short-time windowing has four important func¬

tions:

• it emphasizes the part of the speech signal to

undergo analysis and sets the signal to zero outside

the analysis frame;

• when properly chosen, it gives a clear indica¬
tion of the time-dependent properties of the speech

signal;
• it represents a smoothed version of the spectral

properties of the signal inside the window; thus, if
the spectral properties of the signal are uniform out¬

side the analysis frame (a sustained speech seg¬
ment), a short-time Fourier transform, for example,

should represent the average properties of the
signal outside the analysis frame; and

• in some cases, it guarantees the existence of
the short-time quantity being measured.

Rabiner and Schafer give a more complete dis¬
cussion of short-time analysis and the effect of win¬
dowing on the various short-time parameters.16

The type of window used has an important effect
on the properties of the short-time quantity being
measured. We illustrate this by considering the
short-time Fourier transform. A useful definition of
this transform appears in the following form:

oc

Xn(eJw)= £ w(n-m) X(m)e-Jwm (D)
m= - oc

where w(n) is a window (Hamming or rectangular)

and x(m) is the speech signal. We can interpret this
equation in two ways:

• as the normal Fourier transform of the se¬
quence ur(n - m)x(m); or

• as the convolution of the window w(n) with

the quantity x{m)e'iwm.

The first interpretation leads to the fact that, for the

normal Fourier transform of the sequence to exist,
the condition

^ I w(n-m)x(n) I <a ®
rt= —oc

must be satisfied. This is true since the window w(n)
has a finite duration. This explanation shows how
windowing can help guarantee the existence of cer¬

tain short-time parameters.
The second interpretation leads to better insight

into the characteristics of the window w(n) in the
frequency domain and in terms of linear filtering
theory. Ideally, we want the window impulse
response to approximate a low-pass filter of cutoff
w. The sharper and smaller the cutoff frequency

(narrow-band analysis) is, the better the frequency
resolution of the window; the larger the cutoff

June 1987 9

Speech Analysis

(wide-band analysis) is, the better the time resolu¬
tion of the window.

Figure D presents impulse responses of the rect¬
angular and Hamming windows. As seen, these re¬
sponses hardly approximate an ideal low-pass filter.
They are characterized by a main lobe of given
bandwidth and side lobes of certain levels. For both
windows the bandwidth is inversely proportional to
the window length, and for a given length it is nar¬
rower for a rectangular window than for a Ham¬
ming window. The levels of the side lobes are in¬
dependent of the window length, but they are
higher for the rectangular window than they are for
the Hamming window.

Thus, in general, if speech analysts are interested
in recovering the periodicity (harmonic structure)
from short-time Fourier transform analysis, they
should use a window of longer length. A rectangu¬
lar window shows harmonic structure better than
does a Hamming window; however, because of the
large level of side lobes, the short-time Fourier
transform of the rectangular window is noisier than
the Hamming window. As a result, analysts seldom
use rectangular windows in short-time spectral
analysis of the speech signal.

On the other hand, the smaller the window
length is, the poorer will be the frequency resolution
(because of the wide bandwidth of the window).
But the smaller window length will average the
complete spectral properties of the speech signal
better; it will also represent the short-time Fourier
transform better to such temporal variables of the
signal as the formants.

Figure D. Impulse response of a rectangular window (a); impulse
response of a Hamming window (b).16 (© 1978, Prentice-Hall,

Englewood Cliffs, New Jersey. Reprinted with permission.)

System functions
The PC XT exercises control over all aspects of the

system by providing, through the use of application
software and a system menu, the following interac¬
tive functions:

• speech editing and segmentation,
• speech analysis and encoding,
• speech synthesis,
• speech prosodic analysis, and
• connection to the host.

Figure 2 summarizes the work carried out by each
system function and shows the interaction between
the menu program and the programs implementing
those functions. Users select menu items with the
help of function keys as shown in the figure. The
menu program is reentered once a program imple¬
menting any specific function is completed. The
following sections detail the achievements of these
functions and the programs implementing them.

Speech editing and segmentation. Computer-based
speech editing allows the speech scientist to input
speech, select the segments of speech that are of in¬
terest to his application, and store the selected seg¬
ments in a backup medium for any future use. With
speech synthesis, the number of synthesis units can be
very large, and much repetitive editing may, there¬
fore, be necessary. This requirement necessitates effi¬
cient and fast interactive computer-based editing and
segmentation facilities.

The present interactive speech editor offers user
prompts to aid in beginning any required action. The
segmentation of the speech data is not carried out
directly on waveform displays. The editor program
uses the FSCB board capability of evaluating the
short-time energy and zero-crossing rate in real time.
From the FSCB board, the program retrieves window
values for the energy and the zero-crossing rate (a
maximum of 256 window values, equivalent to about
3.3 seconds of speech) and displays them. Users can
then move an interactive graphics cursor to select and
isolate any segment of speech of interest to them.

The use of the short-time energy and zero-crossing
rate for speech segmentation is well known and has
certain advantages.16 First, users can easily select the
speech segment of interest because the classification
of speech segments into voiced and unvoiced forms is
easily seen from energy and zero-crossing displays.
Second, because the speech is displayed in com¬
pressed form (only 256 points are used to represent a
speech waveform of 65,536 samples), users can work
with a low-resolution graphics terminal instead of the
usual high-resolution terminals. In this implementa¬
tion we use the medium-resolution (320 x 200) IBM
graphics terminal in the color mode.

The editor program selects any segment from ac¬
quired speech data in two stages. In the first stage

10 IEEE MICRO

Figure 2. A sum¬
mary of system
functions and menu
function selection.

users eliminate (from energy display) any silence in
the acquired speech. In the second stage users select
(from energy and zero-crossing-rate displays of the
cleaned speech) the speech segment of interest. After
this, users can display and view selected speech
samples.

Other functions carried out by the editor are:

• repetitive capture and replay of any utterance
until satisfactory hearing is achieved,

• optional filing (on the PC hard disk) of the
cleaned speech and of any selected speech segment,

• retrieval (from the hard disk) of any previously
filed, cleaned speech for any further segmentation,
and

• spectrum evaluation and display of any portion
of a voiced speech segment.

The editor allows users to speedily create on the
PC XT hard disk an inventory of speech synthesis

units (short phonetic segments like the demisyllables
or complete word utterances). These units could be
used later in speech synthesis research or application.
Segment duration measurements are readily available
from the editor program. These measurements are
useful in language-dependent studies such as the
verification of the contextual variations of the syn¬
thesis units and the study of some prosodic features
such as changes in speech rhythm.

Additionally, the editor allows two speech wave¬
forms to be active simultaneously in the PC RAM.
Users can select and swap segments of equal lengths
between the two waveforms and alternately replay
them. We found that this facility can be of some use
in the study of certain linguistic phenomenon such as
the source of emphasis in the Arabic language.17

The editor program is a hybrid between several
assembly language routines and a compiled Basic
main program. Compiled Basic is used for the main

June 1987 11

Speech Analysis

^ Start ^

Initialize FSCB
Reset comparison
indicator

Selection to Yes

. (PI)
hard disk?

r
Record utterance
on hard disk Change screen mode to

No
- 1

To segment
selection (P2)

w(P2)

Prompt user to record
speech
Capture utterance
Retrieve utterance and
short-time parameters
Invoke speech reply

Change screen mode to
graphic display
Display energy and
zero crossing
Invoke cursor routine
to select a segment
Replay segment
Change screen mode to
monochrome

1 Change screen mode
to color graphics

* Display energy of
utterance

’ Invoke cursor routine
and clear silence

1 Replay selection
1 Change screen mode

to monochrome display

Yes

To segment
selection (P2)

To utterance
recording (PI) t. Reset comparison indicator

1
Change screen to
graphic display
samples

Figure 3. Flowchart for the speech segmentation program.

IEEE MICRO

To utterance
recording (PI)

A

• Relocate present
segment in PC RAM

• Remember segment
boundaries

• Set comparison
indicators

180f 45

program because it interfaces easily to the FSCB
board and the assembly language routines, runs as
fast as any other compiled language for the PC, and
has superb color graphics capabilities. Assembly lan¬
guage routines carry out low-level hardware-depen-
dent tasks such as:

• controlling the digital-to-analog conversion and
replay of the speech,

• relocating the speech from the FSCB into the
user-free RAM, and

• switching the display mode between mono¬
chrome text and color graphics.

The editor uses both monochrome and color
graphics screens. The monochrome screen outputs
the text of user prompts and editor response mes¬
sages, while the graphics screen is used exclusively for
graphic output. This mode of operation is less con¬
fusing for users than using one text/graphics screen
for simultaneous text and graphics output.

For any segment or utterance being processed, the
editor outputs two disk files: a file of raw speech data
for the segment or utterance being processed and a
file of the short-time parameters for the same ut¬
terance. The flowchart in Figure 3 represents the way
the program implements the speech-editing functions.
Figure 4 shows the way a segment of speech is
selected from short-time energy and zero-crossing
curves.

Speech analysis and encoding. Analyzing and en¬
coding speech as LPC parameters, pitch, and energy-
related gain is accomplished through short-time

No

Return to system menu <D
E __ (0

CED 90 —

o
i— o
o

a>
n
E

z

30

CD

15 iS

— 0

,±-7.5

\ ,'\ t
Y v/

43

\ r-\

SH

I.swans

liis
mam

W'1 ...
"'.. I.......las.3

43 Frame number ■

Figure 4. Interactive selection of a speech segment; energy (1), zero-crossing rate (2).

June 1987 13

Speech Analysis

analysis techniques. (See the box on LPC techniques
and computations.) The interactive speech analysis
and encoding program takes, as input, the two files
created by the editor and carries out, on a window
basis, the following computations and functions:

• 14 autocorrelation coefficients from which 14
LPC parameters are derived,

• 14 LPC parameters,
• pitch and gain,
• optional display of window samples and the win¬

dow autocorrelation function,
• optional graphical representation of the LPC pa¬

rameters,
• optional display and editing of the LPC parame¬

ters, and
• filing of the parameters.

The display of window samples and the autocor¬
relation function allows users to make an empirical
judgment about whether the window is voiced or un¬
voiced. Based on this decision, the program either
computes or does not compute a pitch for the win¬
dow. This step is important since some speech-voiced
fricative windows—the shape of the autocorrelation
function—while showing voicing presence do not
really exhibit the sharp peaks necessary to satisfy the
automatic pitch-detection criterion described in the
box.

The graphical representation of the LPC parame¬
ters permits users to make spectral comparisons be¬
tween segments of the same class. This type of com¬
parison is useful in conducting language-dependent
studies such as the verification of a language’s
allophones.

One may wonder why the process of finding the
pitch is followed when the FSCB readily evaluates it
in real time. The reason is that the FSCB pitch com¬
putation is tailored toward evaluating the pitch of
sustained, uniform-voiced speech sounds. (For exam¬
ple, children with pitch irregularities could learn to
control the pitch of their voices by using computer-
based pitch-activated games.14) For this purpose the
FSCB is very reliable; however, it is not suitable for
normal continuous speech.

In synthesizing speech, it is always better to extract
the synthesis units from continuous speech. The least
this pitch computation will do is to verify whether the
calculated pitch agrees with the FSCB board’s pitch
or not. If the results are not the same, users can
depend on their own phonetic knowledge about the
speech segment being encoded to decide whether to
give the disputed window a pitch value or zero
pitch—guided also by neighboring values.

The speech encoding and analysis process pro¬
gresses interactively, one window at a time. The pa¬
rameter values for each window in an utterance are
computed, verified, edited (if necessary), and added
to a parameter disk file. The compiled Basic program

LPC Technique and Computations
Performed by the Analysis

Program

Linear predictive coding is one of the well-known
frequency domain techniques for speech analysis
and synthesis. With this technique the vocal tract is
modeled by a time-varying digital filter whose pa¬
rameters are assumed constant over a short-time
analysis window. The filter is either excited by
periodic pulses for (voiced speech sounds) or by
random noise (for unvoiced sounds).

A well-known property of linear predictive coeffi¬
cients is their relationship to the geometry of a con¬
catenation of lossless acoustic tubes. This property
gives a physical correspondence between the LPC
model and the speech production process discussed
earlier. The vocal tract model used in the following
computations is a 14-pole, time-varying digital filter
whose steady-state system function is of the form:

H(z)= -9-

1- £ aiZ-' (a>
(=1

The parameters that we need to measure from
real speech data are the gain (G), the 14 LPC
coefficients (a), and the pitch of the speech (for
voiced sounds). The algorithms behind the compu¬
tations of these parameters are well explained in the
literature. The speech analysis program implements
the algorithms. We give a brief overview here.

LPC computations
The first set of computations finds the 14 auto¬

correlation coefficients from which the vocal tract
model parameters are derived. The 14 auto¬
correlation coefficients satisfy the relation

R(k) = E y(>)*yd + k)
i,k o< / < 127 -k (b)

k < 13

We obtain the sequence y(i) by multiplying the
original window data by a Hamming window of
equal length and of the form

H(i) = 0.54-0.46 *cos(2 **■*/'/127)

o < / < 127 (c)

The computed set of 14 autocorrelation coeffi¬
cients represent the window’s low-time autocorrela¬
tion values. They also represent the frequency spec¬
tral characteristics of the window and are thus used
to compute the 14 linear predictive coefficients.

We use the autocorrelation method3 to obtain
the linear predictive coefficients. Durbin’s recursive

IEEE MICRO

algorithm provides the predictor estimates.25 The
following recursive equations summarize this
algorithm:

£?(°) = R (0) (d)

i— 1 ..
- £ a^RU-j) / e (/-l) (e)

7=1 1 < / < 14

a (P = kj (f)

a 1

•i. II a (i-i)
i-j (g)

eh) = (1 -kj)2 e<'-h (h)
1 < y < / - 1

Equations (d) through (h) are solved recursively
fori = 1,2,3,..., 14. The final solution for the LPC
model coefficients is given by

07 = 0:7(* *4)

i < j < 14 (i)

In the solution for the 14 LPC coefficients, the
autocorrelation coefficients R(k) are replaced by
their normalized counterparts:

Pitch computation
The second set of computations carried out on

the window data deals with detecting the funda¬
mental frequency of the window. The technique
used for extracting the pitch of the window is essen¬
tially a variation of Sohndhi’s method26 for spec¬
trum flattering to remove the effects of the vocal
tract transfer function on the window autocorrela¬
tion function. This method leads to peaks, (pro¬
duced essentially because of the voice pitch), which
show on the autocorrelation function. We summa¬
rize the technique:

• Send the original window data through a 900-
Hz, digital low-pass filter having a discrete transfer
function of

z~2 + a\z~ l+a2

z~2-blz~1 + b2 (1)

al = 2\a2= \\b\ = 0.845; b2 = 0.25

• Compute the maximums in the first and last
thirds of the filtered output, and the signal is clipped
to 68 percent of the minimum of the two maximums.

• Use the output from the clipper to create a set
of 128 autocorrelation coefficients (window auto¬
correlation function), which are used for tracking
the pitch. Compute the autocorrelation function
from the relation

r(k) = R(k)/R(o) (j)

This equation does not change the solution to the
LPC model parameters but leads to the partial cor¬
relation coefficients, or PARCOR coefficients, with
(kj) satisfying the condition

-1 < k < 1 (k)

R(p) = E *(*) **(» +P) (m)
i,p os/ <127 - p; o < p < 127

• A window is automatically indicated as voiced
if the peak in the autocorrelation function is 30 per¬
cent of its value at zero time. Figure E shows the
autocorrelation function and the speech samples of
a voiced window.

This condition on the quantities /c, is the neces¬
sary and sufficient condition for the LPC vocal tract
model to be stable.4’5 The autocorrelation coeffi¬
cients are computed with sufficient numerical ac¬
curacy so no instability problems are met as a result
of rounding-off errors in computation.

The window gain is computed from the following
relationship:

14

G2 = R(o) — £ akR(k) (n)
k=\

Figure E. Autocorrelation function (1) and speech samples (2) for a voiced window.

June 1987 15

Speech Analysis

uses the assembly language routine to switch between
monochrome and color graphics screens. The flow¬
chart in Figure 5 shows the logic of the program.

Speech synthesis. A speech synthesis program,
which is a software simulation of an LPC synthesizer,
takes as input the encoded parameter disk files and

delivers synthetic speech through either a synthesis-
by-analysis or a constructive-synthesis method. In
constructive synthesis the program smooths out the
transitions across phonetic segment boundaries.

The time-varying, discrete-time LPC model, whose
function in the steady-state system is given by Equa¬
tion a (in the box on LPC techniques and computa-

C Start)

(PI)

• Get utterance/segment
data and parameters

• Relocate speech data
1

Compute LPC and gain
1 Display parameters
i Edit parameters (if needed)
■ Add parameters to disk file
■ Increment frame counter

(P2)

◄-

To (P2)

■ Change display mode to
graphics

■ Display speech samples
and window auto¬
correlation function

Change display mode to
monochrome
Display energy, pitch,
and zero energy rate of
FSCB

Compute auto correlation
function for current frame

Compute pitch

Figure 5. Flowchart of the speech analysis program.

16 IEEE MICRO

tions), produces synthetic speech. For this system we
relate the output speech samples x(n) to the input ex¬
citation u(n) by the following difference equation,
which is of the recursive type:

14

x(n) = £ ak x(n-k) -I- Gu(n) (1)
k = \

The model is excited by an impulse train spaced at
the fundamental period for a voiced speech window
and by a wide-band random-noise sequence for an
unvoiced window.

The quality of the synthetic speech is very good
when synthesizing words and short phrases (for
Arabic and other languages) with the synthesis-by¬
analysis method. The quality is also very good for
synthesizing Arabic using a constructive-synthesis ap¬
proach on demisyllabic units. However, for the time
being, barely intelligible Arabic is produced using
basic sound units such as allophones. Besides syn¬
thesizing and replaying speech, the speech synthesis
program creates a disk file that holds the samples of
the synthesized utterance. Users can also choose to
view speech waveforms of synthetic and actual
utterances.

Like the speech editor and the analysis programs,
the synthesis program consists of a few assembly lan¬
guage routines linked to a main program. The main
program is written in compiled Basic, and the same
assembly language routines used with the editor are
used here for the same purpose. The flowchart in
Figure 6 shows the logic of the program; Figure 7
reproduces synthetic and actual speech waveforms
for a voiced window.

Prosodic features. The study of speech prosody in
terms of variations that occur to the speech supra-
segmental parameters (stress, pitch, or intonation and
rhythm) during normal continuous speech is impor¬
tant in producing high-quality synthetic speech.

Such a study is needed for developing the rules
underlying those variations and is important for con¬
structive synthesis (synthesis by rule or text into

Figure 6. Flowchart of the speech synthesis program.

speech). The rules, so developed, can be implemented
by a text-to-sound transcription program, which
analyzes input text and delivers smoothed parameter
tracks for a synthesizer.

A program that plots pitch and energy contours as
functions of time for a short sentence is included.
The values of the pitch and energy for the sentence
are obtained during the editing and the analysis

10-MV

Time

Figure 7. Examples of windows: excitation (1), synthetic (2), and actual voiced (3).

12.8ms

June 1987 17

Speech Analysis

Time -► 425 ms

Figure 8. Pitch (1) and energy (2) contours for an Arabic word.

phases. Figure 8 shows such pitch and energy con¬
tours for a word made up of three syllables. From
the shapes of these contours, it is obvious that the
speaker has stressed the first syllable of the word and
has said the word in an inquisitive context (indicated
by the rising pitch).

Connection to the host and host analysis program.
A high-speed link exists between the PC and the host
computer. This link allows high-speed speech data
transfer between the two computers. The connection
to the host is useful as it allows users to take advan¬
tage of some powerful speech signal processing
facilities available only at the host.

A powerful one- and two-dimensional signal pro¬
cessing package has been developed by the IBM Win¬
chester Scientific Center.18 This package can readily
be used for speech processing applications. User-
written macros in the IAX language (the language of
the Winchester package) can perform the following
speech-processing functions:

• spectrum analysis and display for any speech seg¬
ment to extract such variables as the formants of cer¬
tain voiced segments,

• spectrographic analysis and display for any utter¬
ance to show sound segment length and the formant
movement in continuous speech,19

• cepstrum analysis for any speech segment to
evaluate speech variables such as the pitch or the for¬
mants.20’21

The above analyses are useful if users are trying
to encode speech in terms of formants (values, band-
widths, and amplitudes). They can also be useful if
users are conducting language-dependent studies such
as the contextual variations of the synthesis units. We
have already used this host facility together with LPC
analysis in conducting spectral studies on the Arabic
language to verify its allophones.

The host connection is also useful in archiving
speech data on the host. This data could later be
retrieved for reanalysis on either the host or the PC,
if the need arises.

Comparision with other systems
The following comparison between the present

system and three other personal computer- or micro¬
processor-based systems does not show which system
is good and which is not. All systems given here are
good in terms of their own specific design objectives.
We simply hope that this comparison highlights the
features of each system, which make it more suitable
than the others in a given application.

The comparison includes a system’s technical
aspects of the:

• processor and type of PC;
• speech segmentation method and graphics resolu¬

tion needed;
• speech analysis method, analysis speed, length of

speech utterance to be analyzed and synthesized at
one time, and speech data compression rate;

• speech synthesis method;
• system utility for other purposes; and
• feasibility of connecting the system to a larger

host computer.

These aspects are not absolute measures but are
only indicators to the goodness of a system. To dem¬
onstrate this fact, we point out that analysis speed,
for example, depends on—besides the speed of the
processor—the particular analysis method chosen,
the programming language used, and skill of the
programmer.

The systems we have come across in the literature
are:

1) a system developed by a group from the Philips

18 IEEE MICRO

Company and centered on an HP9816S desktop
computer,10

2) the Portable Speech Development Laboratory
(PASS) from Texas Instruments,11 and

3) the Interactive Laboratory System for the IBM
PC and XT (ILS-PC1) from Signal Technology,
Inc.12

Table 1 summarizes the technical aspects for each
of the three systems and for our present system. As
stated early in this article, the present system meets
three objectives:

• a system to conduct experiments in synthesizing a
language (Arabic is the main target) using a construc¬
tive-synthesis or a synthesis-by-analysis approach;

• a tool for conducting language-dependent
studies, such as the study of prosodic features and
the verification of the contextual variations in the
synthesis units; and

• a tool for generating parameter codes, which
later can be adapted to a specific target synthesizer.

The first aim is met by using the PC in a stand¬
alone mode. Fast editing and segmentation facilities,
which can be used with low-resolution terminals,
have been incorporated in the system. The analyses
are carried out at reasonable speed by using only the
power of the Intel 8088 (not a true 16-bit processor).
As the system is experimental only, a software
simulation of a synthesizer performs the synthesis.
The study of the language-dependent aspects can be
carried out only on the PC and at reasonable speed.
The development of parameter codes to be used with
a future target synthesizer requires the use of both
the PC and a host at this stage.

The PASS and the Philips systems have been de¬
signed with different objectives than our present sys¬
tem. As far as I can see, both systems were designed

Table 1.
Technical aspects of present system

and other PC- or microcomputer-based systems.

|System (Processor 6c PC (Segmentation |*Analysis method]Synthesis Method|System's utility|Connnectivity

i | used | method 5c VDU (^Analysis speed |for other |to a larger

! i |resolution |*Max segment (purposes | system 6c host

1 i | length i |usage

1 i |*Data reduction i

1 i | rate i

|The ILS-PC1 (Intel 8088 |Speech waveform (Spectral (No synthesis
1
|IBM PC on which (Possible, user

1 |Inside IBM-PC |with a cursor |analysis |system is based |provide his own

1 |(not true 16-bit(VDU resolution |other aspects |can be utilized |communication

1 |processor) |not clear (not known |for other (hardware 6c

1 i |(possibly j |purposes |software host

1 i | 640 x 200) i i (used for speech

1 i i i (data archiving

|The PASS (Processor used |VDU used in text |*LPC analysis |LPC synthesis by|Special purpose (Possible user

1 jis TM 9900 (16- |mode for para- |*Near real time |a hardware (system cannot be|provide his own

1 I bit) inside |meter edit j*12 secs |synthesizer (utilized for (software and

1 |pass main System|No need for j*96 kb/sec to |other purposes (hardware host

1 (unit |segmentation J 180 kb/sec i |used for speech

1 i i i |data archiving

|System based

— j-

on(32-bit process- (Speech waveform |*Formant |Formant [HP 9816S desk |Not visible to

!the HP9816S (or inside I with a cursor |*45 sec/sec of (synthesis by a (top computer can(the author

1 |HP9816S |VDU resolution speech |hardware (be utilized for

1 1 |300 x 400 |*0ther aspects |synthesizer (other purposes

1 1 (not visible to i

1 1 | the author i

[The present
““ 1

lintel 8088 |From short time j*LPC |LPC synthesis |IBM PC A XT can (Possible user

|system |inside IBM PC |energy and zero 1*300 secs/sec of (by a software (be utilized for |provides his

i i (crossing rate speech |synthesizer |other purposes (own hardware 6c

i i (VDU resolution *3.3 sec i (software host

i i |320 x 200 |*120 kb/sec to i (used for:

i i j 506 kb/sec i (1.Further ana-

i i i i lysis

i i i i (2.Speech data

i i i i | archiving

June 1987 19

Speech Analysis

to act, mainly, as tools for developing parameter
codes for specific target synthesizers using a syn-
thesis-by-analysis method. The systems use either true
16-bit or 32-bit microprocessors. It appears, there¬
fore, that in applications where the primary need is
for fast development of coded speech to be used later
in a product using a specific target synthesizer, the
PASS system offers advantages over the others.

The Philips ILS-PC1 system is a general-purpose
signal processing package, which has been adapted to
run on the IBM PC and XT. It appears from the
designer’s choice of the PC and the wide range of
signals for which the package can be used (from low-
frequency underwater acoustic waveforms to very
high frequency radar signals) that the aim was to
satisfy the needs of a large class of scientists involved,
in one way or another, in signal processing.

As far as I can tell, for speech analysis the ILS-PC
runs at the normal PC pace Gust like our present sys¬
tem), and it allows users to perform spectral analysis
and encode speech in terms of formants. It appears
also that the present implementation of the ILS-PC
does not support speech synthesis, as was the case
with the ILS for minicomputers.

IBM’s Kuwait Scientific Center uses a speech seg¬
mentation, analysis, and synthesis system, which
is centered on the IBM PC XT. This system can

be used in applications in which users wish to ex¬
periment with language synthesis and language-
dependent studies before committing to a target syn¬
thesizer.

The system can also be used to develop speech pa¬
rameter codes that could eventually be adapted to a
specific target synthesizer. In a stand-alone mode the
system performs functions useful in speech synthesis
research. These include the:

• input and editing of speech;
• creation of phonetic speech segments, words,

phrases, or inventories of sentences and measure¬
ments of their durations;

• analysis and encoding of speech in linear predic¬
tive codes;

• study of prosodic language features translated
into displays showing pitch and energy contours;

• verification of contextual variations of the syn¬
thesis units and measurements of their durations and
changes in LPC spectral properties; and

• software simulation of a speech synthesizer as the
discrete-time linear predictive model for speech
production.

These functions are enhanced by having access to a
mainframe computer supporting a general-purpose
signal processing package such as the IAX. Such a
connection offers additional signal processing capa¬
bilities, for example, coding speech by using for¬
mants and formant-based studies of a language. The

connection can also be used for archiving speech data
on a host.

The menu-driven system is fully user-interactive
and modular. Modularity permits the system to be
changed easily to accommodate signal processing al¬
gorithms other than those already implemented on it.
As it stands now, the system uses only the Intel 8088
microprocessor, which is the heart of the IBM PC XT
computer. Its speed in performing functions is good.
However, system performance could be enhanced fur¬
ther by (1) adding the Intel 8087 coprocessor, (2)
changing the existing software and hardware to an
IBM PC AT with a true 16-bit processor, and (3)
adding dedicated speech processing hardware such as
boards with hardware signal processing capabilities.
Besides increasing the speed of the existing software,
any of these methods can also turn the system into a
very powerful and speedy formant analyzer and
synthesizer.

The system has been developed as part of a
research project in speech synthesis. This project en¬
visages synthesizing an unlimited Arabic vocabulary
by using a constructive-synthesis approach (using
short speech segments such as demisyllables or allo-
phones). So the system must, at some stage, have the
capability of turning Arabic orthographic input into
speech. Provision has been made for this capability in
the design; the modularity of the system also helps.

Currently, the system verifies the results of a
phonetic study of the Arabic language, which is
determining and validating the synthesis units. Very
good results have been achieved with a syllabic ap¬
proach to synthesis.

Finally, we compared this system with other sys¬
tems of a similar nature. We showed its potential use
as an experimental research system in language con¬
structive synthesis and in the study of language
phonetic properties. M

References
1. R.W. Schafer and L.R. Rabiner, “System for Auto¬

matic Formant Analysis of Voiced Speech,” J. Acoustic
Soc. America, 1970, pp. 634-648.

2. M.R. Schroeder, “Vocoders: Analysis and Synthesis of
Speech,” Proc. IEEE, Vol. 54, Los Alamitos, Calif.,
1966, pp. 720-734.

3. J. Makhoul, “Linear Prediction: A Tutorial Review,”
Proc. IEEE, Vol. 63, Los Alamitos, Calif., 1975,
pp. 561-580.

4. J.D. Markel and A.H. Gray, Jr., Linear Prediction of
Speech, ” Springer-Verlag, New York, 1976.

20 IEEE MICRO

5. E.M. Hofstetter, “An Introduction to the Mathematics
of Linear Predictive Filtering as Applied to Speech
Analysis and Synthesis,” MIT Lincoln Labs tech, note,
Cambridge, Mass., 1973.

6. C.H. Coker, “Speech Synthesis with Parametric Articu¬
latory Model,” Proc. Speech Symp., Kyoto, Japan,
1968.

7. L.R. Rabiner, R.W. Schafer, and J.L. Flanagan, “Com¬
puter Synthesis of Speech by Concatenation of For¬
mant-coded Words,” Bell Syst. Tech. J., Short Hills,
New Jersey, 1971, pp. 1541-1558.

8. D.H. Klatt, “Software for a Cascade/Parallel Formant
Synthesizer,” J. Acoustical Soc. America, 1980,
pp. 971-995.

9. The ILS Software Package, Signal Technology Inc.,
5951 Encina Rd., Goleta, CA 93117.

10. J.D. Ouden and M.T. Have, “Stand-alone Speech
Development System Using a Personal Computer,”
Proc. Speech Technology, Media Dimension Inc., New
York, 1985, pp. 288-291.

11. J. Helms and S. Peterson, “Portable Speech Develop¬
ment System Creates Linear Codes,” Electronics, Sept.
1982, pp. 151-156.

12. The ILS-PC Overview, Signal Technology Inc., Goleta,
Calif.

13. D. Bertrand, “A Speech Input and Processing Board
for a Personal Computer, Proc. ICASSP, San Diego,
Calif., 1984.

14. C. Hubert et al., “Speech Processing on a Personal
Computer to Help Deaf Children,” IFIPS Conf.,
R.E.A. Mason, ed., Elsevier Science Publisher B.V.
(North-Holland), 1983.

15. PC-Mate Labmaster Users Guide, Tecmar Inc.,
PC Product Division, 6225 Cochran Rd., Solon (Cleve¬
land), OH 44139.

16. L.R. Rabiner and R.W. Schafer, Digital Processing of
Speech Signals, Prentice-Hall, New York, ISBN
0-13-213603-1, Chap. 4 and 6, 1978.

17. S.H. Al-Ani, Arabic Phonology, Mouton, The Hague,
1970.

18. P. Jackson, “Experience with the IAX Image Process¬
ing System,” Digital Signal Processing, V. Capellini and
A. G. Constantindes, eds., Elsevier Science Publishers
B. V. (North-Holland), 1984, pp. 255-261.

19. W. Koenig, H.K. Dunn, and L.Y. Lacy, “The Sound
Spectrograph,” J. Acoustical Soc. America, July 1946,
pp. 19-48.

20. A.V. Oppenheim and R.W. Schafer, “Homomorphic
Analysis of Speech,” IEEE Trans. Audio and Elec¬
troacoustics, June 1968, pp. 221-226.

21. A.M. Noll, “Cepstrum Pitch Determination,”
J. Acous. Soc. America, Feb. 1967, pp. 293-309.

22. J. Bristow, Electronic Speech Synthesis, Chap. 6 and 9,
ISBN 0-246-11897-0, Granada, London, New York,
1984.

23. P. Cummiskey, N.S. Jayant, and J.L. Flanagan,
“Adaptive Quantization in Differential PCM Coding of
Speech,” Bell Syst. Tech. J., 1973, pp. 1105-1118.

24. G. Fant, Theory of Speech Production, Mouton, The
Hague, 1970.

25. J. Durbin, “Efficient Estimation of Parameters in Mov¬
ing Average Models,” Biometrica, Vol. 46, Parts 1 and
2, 1959, pp. 306-316.

26. M.M. Sohndhi, “New Methods for Pitch Extraction,”
IEEE Trans. Audio and Electroacoustics, 1968,
pp. 262-266.

Yousif A. El-Imam joined IBM to work on computer-based
speech analysis and synthesis. He has recently completed the
implementation of a PC-based, unlimited-vocabulary,
Arabic text-to-speech system. Previously, he worked for the
World Health Organization in Geneva planning a local area
network, for Kuwait University as a lecturer in digital elec¬
tronics and microcomputer systems, and for L.M. Ericsson
of Sweden as a telecommunication engineer on the AXE-10
computer-controlled telephone exchanges. His research in¬
terests are in speech synthesis and recognition, artificial in¬
telligence, and computer communications and networks.

El-Imam received a BSc in electronics and a PhD in com¬
puters and controls from Dundee University, Scotland, in
1974 and 1978.

Questions concerning this article can be directed to
Yousif A. El-Imam, IBM Kuwait Scientific Center, PO Box
4175, Safat, Kuwait.

Reader Interest Survey

Indicate your interest in this article by circling the
appropriate number on the Reader Interest Card.

High 153 Medium 154 Low 155

June 1987 21

ADDRESS
MAPPING WITH

OVERLAPPED
ROTATING

ENTRIES
G.J. Dekker and A.J. van de Goor
Delft University of Technology, The Netherlands

A memory management unit can be designed
specifically for use with the Unix operating
system and can take the place of a commer¬

cially available MMU chip such as the Motorola
MC68451 or the National Semiconductor NS16082.
A team of students and staff members of the com¬
puter architecture group of the
Laboratory for Switching
Technique and Computer Ar¬
chitecture, of the Delft Univer¬
sity of Technology in the
Netherlands, has developed a
general-purpose, high-perfor¬
mance, single-board system
with such an MMU. At the
time the MMU was designed,
it had already been decided
that the Unix operating system
was going to be used and that
the system would consist of a
MC68010 CPU, 1M bytes of
memory, and a fast Winchester disk.

Memory management concepts. Let us begin with
a functional description of a memory management
unit. However, since our single-board computer is in¬
tended to be used with the Unix operating system, we
will examine memory management in this context in¬
stead of giving a more general presentation.

One of the most important components of a com¬
puter system (apart from the CPU) is the MMU.1

This device maps addresses generated by the CPU,
which are called logical addresses or sometimes vir¬
tual addresses (e.g., in the VAX), into addresses for
the main memory, which are called physical addresses
(Figure 1). The minimum tasks Unix requires this
translation to perform can be described by the terms

relocation and protection.
Relocation usually implies

that sets of contiguous logical
addresses are mapped to sets
of contiguous physical ad¬
dresses of an equal length but
at a different location. Protec¬
tion means that the MMU is
capable of giving access pro¬
tection to sets of logical ad¬
dresses (that is, can specify
read, write, and execute
access).

Besides these two minimum
requirements, two other cap¬

abilities are specified in more sophisticated versions of
Unix—paging or segmentation and virtual memory.

It would alleviate the task of physical memory
allocation strategies if it were not necessary for sets
of logical addresses having the same relocation
and/or protection to be mapped on single pieces of
physical memory of equal length. Such mapping can
be avoided if one subdivides a set of logical addresses
into a number of partitions, each able to be relocated
to noncontiguous pieces of physical memory and

A memory management unit that
supports demand paging is

implemented with standard logic
and fast-access RAM chips,

resulting in much faster
address translation than that

provided by the standard
Motorola MC68451 MMU.

22 0272-1732/87/0600-0022$01.00 © 1987 IEEE IEEE MICRO

each having its own protection (i.e., read, write, and
execute protection). When all these pieces are of
equal length this technique is called paging, and when
they can be of varying length it is usually called
segmentation.

Because of localities in address references, it is not
necessary to have all pages or segments loaded in
physical memory during the execution of a program.
The operating system can load only those parts that
are actually needed and store the remaining parts on
disk. However, if the program generates a logical
address located in a section that is not loaded in main
memory, the MMU has to signal this fact to the pro¬
cessor, which postpones the partially executed in¬
struction and takes the action required to load the
appropriate section. After this, the program can be
resumed. This scheme is called virtual memory.

Data

JL

CPU

IfT

Logical
address

■> MMU

Addressing error

Physical
address.

-S»
Main

memory

Figure 1. Logical to physical address mapping through an MMU.

23 16 15 9 8

Index 1 Index 2 Offset

"V"
.y_

Logical page number Pageoffset

Index 1: Page table entry

Index 2: Pointertable entry

Figure 2. The logical address in the National NS16082.

Existing MMUs. Let us briefly examine three ex¬
isting MMUs—the Motorola MC68451, the National
Semiconductor NS 16082, and the Western Electric
Bellmac-32—and present the reasons why we did not
choose any of them.

The MC68451. Since this MMU did not seem well
suited to our system, we will not elaborate on its
details.2 However, it had the following advantages:

• It is a member of the M68000 family, which
makes it easy to interface to the MC68000.

• It is a single-chip VLSI design, which makes it
reliable and easy to implement.

• The version of Unix we were using had already
been adapted to it.

But the MC68451 also had several disadvantages:

• It allows only 32 variable-length segments to be
used per MMU.

• It forces each segment to have a length equal to a
power of two, complicating memory management
strategies (binary buddy algorithms, etc.).

• Its fastest version (8 MHz) still has a 217-ns
address delay time, which introduces two extra wait
cycles in a memory access.

• It is not very well suited for some kinds of virtual
memory due to its limited number of segment regis¬
ters (although some form of demand segmentation
can be implemented).

It was these disadvantages that made us decide not to
use the chip.

The NS16082. This MMU supports 32-bit, demand-
paged virtual memory architectures.3 It uses a com¬
bined segmentation/paging scheme to support the
virtual memory architecture of the NS 16032. Because
this chip offers a mechanism which seemed ideal for
our system, we will briefly discuss the memory
architecture it provides.

The 16032 CPU has a logical address space of 16M
bytes and a physical address space of 16M bytes, and
each is partitioned into 512-byte pages. To minimize
the mapping table size, designers used a two-level ap¬
proach. A logical address consists of two fields: an
offset within the 512-byte page and a logical page
number (Figure 2). This logical page number is parti¬
tioned into two subfields: an eight-bit page table en¬
try address (Index 1) and a seven-bit pointer table en¬
try address (Index 2). The eight-bit page table entry
address specifies an index address for the first-level
page table, which has 256 entries of 32 bits each. The
MMU has two page table base registers, PTB1 and
PTB2, one for the user and the other for the super¬
visor. Index 1 indexes into the page table, which has
its base in PTB1 or PTB2. Each of the 256 page table
entries contains a 15-bit physical page frame number
that selects one of 256 pointer tables. Each pointer
table has 128 pointer table entries. Index 2 indexes
into the pointer table. Each pointer table entry is 32
bits wide, and each generates a 15-bit physical page
frame number. The least significant nine bits of vir¬
tual address are appended with this 15-bit physical

June 1987 23

Amove

Virtual address

23 16 15 98 0

Figure 3. Logical to physical address translation in the NS16082.

page frame number to generate the 24-bit physical
address. The address translation process is shown in
Figure 3. The MMU has 32 entries in its translation
buffer (associative cache). If the associative compare
results in an address hit, the translated address is
generated quickly. However, if there is no match, the
MMU refers to the page table and pointer table in
memory and tries to update the buffer.

Although the paging scheme implemented in the
NS 16082 seemed ideal for an operating system sup¬
porting paging, this MMU had drawbacks that made
us reject it:

• It was rather expensive and difficult to obtain in
fast versions at the time we were creating our design.

• It is difficult to interface to an MC68000,
because its bus architecture is different from that of
the M68000 family.

• Using this MMU would have introduced a con¬
siderable extra address delay time, due to the inter¬
face logic that would have been needed.

The Bellmac-32. The Bellmac-32 MMU4 and the
NS16082 are comparable in functionality, except that
the NS 16082 supports paging only. Both have hard¬
ware to perform miss processing in an on-chip de¬
scriptor cache. A comparison of the Bellmac-32 and
the MC68451 shows that the latter supports seg¬
mentation only (it treats paging as a special case of
segmentation) but that it allows multiple MMUs to be
connected to a single CPU.

The Bellmac-32 MMU has the additional capability
of supporting paged and unpaged segments. How¬
ever, because this chip was not available when we
started our project and because the rotate mechanism
we describe here seemed very promising, we did not
further consider the Bellmac-32.

Because existing single-chip VLSI MMUs either
didn’t meet our requirements or weren’t yet available
in working silicon, we decided to build our own
MMU, realizing that this would not only enable us to
meet our requirements but also give us experience in
an important area of computer architecture.

24 IEEE MICRO

Memory management on the
VAX-11/750

We had a VAX-11/750 with Berkeley Unix 4.1 in
our laboratory, and we felt it could be useful to study
the logical memory features of that architecture. We
felt that if we could in some way simulate the VAX’s
MMU mechanism, we could adapt Berkeley Unix to
our single-board computer.

Hardware. Here we will summarize the part of the
VAX architecture that relates to memory manage¬
ment, as it is described in the VAX handbooks.5’6
Figures 4, 5, and 6 illustrate some important features
of the VAX memory architecture.

The logical and physical address spaces are divided
into 512-byte pages. Of the logical address space, one
half (that with the most significant bit set) is referred
to as system space. System space contains the operat¬
ing system software and system-wide data, which is
shared by all processes. The other half of the logical
address space is defined for each process; it is there¬
fore referred to as process space. Process space is fur¬
ther divided (on the next most significant address bit)
into P0 space, in which program images and most of
their data reside, and P1 space, in which the system
allocates space for stacks and process-specific data.
Because the PI space is used for stacks, it is allocated
from high addresses downward. Each process has its
own PO and P1 spaces, independent of others in the
system. Figure 4 shows the address spaces of several
processes. Each process space is independent of the
others, while the system space is shared by all. Figure
5 shows the logical and physical address format, in
which the size of the physical address is taken to be
32 bits long. (In fact, the width of this address is
less.) The high-order two bits of a logical address im¬
mediately identify the space to which the logical ad¬
dress refers. Whether the address is physical or
logical, the byte within the page is the same.

The processor has three pairs of page mapping reg¬
isters for each of the three spaces actively used. These
mapping registers are loaded by the operating system,
along with the base address and length of the page
tables. There is one active page table for each of the
three spaces. A page table is a logically contiguous
array of page table entries. Each page table entry rep¬
resents the physical mapping for one logical page.
To translate a logical address into a physical address,
the processor uses the logical page number as an in¬
dex into the page table from the given page table base
address. Figure 6 shows the format of a page table
entry. In concept, the process of obtaining a page
table entry occurs on every memory reference. In
practice, however, the processor maintains a trans¬
lation buffer, which is a special-purpose cache of
recently used page table entries. When one of the
page tables is updated, this translation buffer must be
invalidated by a special-purpose instruction.

Process 1 Process 2 Process 3 ...

PO space
(grows
toward
higher
addresses)

PI space
(grows
toward
lower
addresses)

System
space

Figure 4. The address spaces of several processes in the
VAX-11.

Logical address

31 30 29 9 8

Logical page number Byte in page

Select PO, PI,orS

31
Physical address \J 1/

9 8 V 0

Page frame number Byte in page

Figure 5. Logical and physical address formats of the
VAX-11.

31 30 27 26 25 21 20

Tit—l Valid (V) bit
Protection code —
Modify (M) bit
Unused -—
Page frame number (PFN)'

Figure 6. Page table entry format of the VAX-11.

June 1987
25

Amore

Software. As mentioned before, the operating sys¬
tem used on our VAX-11/750 is Berkeley Unix 4.1, a
descendant of the standard PDP-11 kernel implemen¬
tation. Readers not familiar with this implementation
can become familiar with it by studying Lions’ com¬
mentary,7 the Unix kernel models developed by Pep-
pinck,8 and the article on Unix implementation by
Babaoglu and Joy.9 With a thorough understanding
of the nonpaging Unix kernel, one can go on to the
excellent report on paging in Berkeley Unix by van
Someren.!0 The requirements imposed on the hard¬
ware by Berkeley Unix will be discussed later in this
article.

MC68010 paging support
Because we chose the M68000 family architecture

for our single-board computer and thus had to develop
our MMU to fit that architecture, we should examine
those aspects of the MC68010 that relate to memory
management.

The MC68010 is a VLSI, single-chip, 16-bit micro¬
processing unit with seventeen 32-bit registers.11 It is
fully object-code-compatible with the earlier members
of the MC68000 family and adds virtual memory and
virtual machine support, and it has improved instruc¬
tion timing.

The processor operates in one of two states of
privilege: the supervisor state or the user state. The
privilege state determines which operations are legal,
and it determines the choice between the supervisor
stack pointer and the user stack pointer in stack
references. It may be used by an external memory
management device to control and translate accesses.

A bus error exception occurs when external logic
terminates a bus cycle with a bus error signal.
Whatever the processor was doing, it immediately
begins exception processing. When a bus error oc¬
curs, a long stack frame (29 words) is used to save the
entire state of the processor. This makes it possible to
continue a partially completed instruction after the
exception handler of the operating system has taken
care of the memory reference problem that caused
the bus error.

A special status word in the stack frame along with
the fault address are used by the bus error exception
handler to determine the memory location and func¬
tion code at the time the bus error occurred. The
RTE (return from exception) instruction is used to
reload the processor’s internal state. The faulted bus
cycle is then rerun and the suspended instruction
resumed.

The MC68000 is, in contrast to the MC68010, not
capable of instruction continuation (which is required
for operations such as block moves because a restart
is not possible), and thus is not well suited to virtual
memory applications.

MMU requirements
We wanted to use the Berkeley Unix 4.1 operating

system on our single-board computer and, if possible,
adapt it to our own paging memory management ar¬
chitecture. Here, we will summarize the requirements
that Bsd 4.1 imposes on memory management hard¬
ware and point out some other design objectives that

have to be met.

VAX compatibility. Bsd 4.1 does not use all the
memory management features of the VAX architec¬
ture, and it changes some features—and adds others
of its own—in a software layer it places around the
hardware. We will discuss the essential details.

Address spaces. The mode of the processor (super¬
visor or user mode) does not influence the mapping
performed by the memory management of the VAX
and is only used for access checking. This results in
only one logical address space formed out of the PO,
PI, and S spaces. Although the PO, PI, and S spaces
in the conventional VAX architecture each can be as
large as 1G bytes, Bsd 4.1 restricts the maximum size
in the following way:

• The PO space, which contains the user mode text
segment and data segment, is restricted to 12M bytes
(6M bytes for the text segment and 6M bytes for the
data segment). However, we have found no Unix ap¬
plication programs that grow over our VAX’s 2M-
byte physical memory limit, although we could easily
write a program exceeding this limit.

• The PI space contains the user mode stack seg¬
ment, which is restricted to 6M bytes, and the user
structure and kernel mode stack segment, which
together occupy 4K bytes. As with the PO segment,
the 6M-byte limit is way beyond the requirements of
normal programs.

• The S space contains the kernel code, kernel
data, and a number of different subspaces. It re¬
quires almost 400K bytes.

Closely connected to the VAX hardware are the
page table structures. Our MMU has to recognize
similar page structures (e.g., a PO, a PI, and an S
page table). The entries in these tables contain at least
the following fields:

• A valid bit (V), which indicates that the hardware
is allowed to use the remaining fields of this format.

• A referenced bit (R), which actually is not sup¬
ported by the VAX architecture but simulated by
software at the expense of considerable overhead.9

• A modified bit (M).
• A protection field (PROT). Bsd 4.1 needs only a

supervisor write access bit, a user write access bit,
and a user read access bit.

• A page frame number (PFN).

26
IEEE MICRO

Figure 7. Logical to physical address translation in our approach.

Page size. Although the VAX hardware supports
512-byte pages, Bsd 4.1 normally treats multiple
hardware pages as one unit, thereby enlarging the ac¬
tual page size and raising performance.9 On our
VAX system, with its 2M bytes of installed physical
memory, the actual page size (determinable at system
compile time) was chosen to be IK bytes. A page size
of 2K bytes seemed the right choice for our single¬
board system, since programs and installed physical
memory sizes tend to grow.

DMA support. The governing design rule for our
project was to build a system with a high perfor¬
mance/price ratio. Implementation as a single-board
system, to eliminate a backplane and bus interface
logic, was a logical consequence. Another conse¬
quence of this rule was that the DMA controllers12
used in our system are only capable of generating
physical memory addresses in a 64K range. Because
all system logic is concentrated on a single board, it is
possible to give the MMU a double function: trans¬
lating the addresses from the CPU and translating the
addresses generated by the 64K DMA channels. A
bus arbiter is required to merge the two address/data
streams. The 64K address range coming from a DMA
controller can be mapped by the MMU onto any ad¬
dress range within the physical memory space.
Moreover, if the MMU is implemented with a paging
mechanism that is also used for the mapping of DMA
addresses, scatter/gather I/O can be performed
because the I/O is done in the logical address space.

Test and boot space. Another design objective is
testability, which means that the system must be able
to test itself during the power-on process and possibly

indicate a faulty unit on the system console. If the
MMU is not functioning correctly, the processor can¬
not access memory and I/O (if these are mapped on
physical space).

If one reserves a part of the logical address space
for a so-called test and boot space, one can solve this
problem. This test and boot space, which is addressed
directly in logical space (without relocation or paging),
contains test and boot software in read-only memory
and the system console terminal interface. With this
arrangement, the system can check the MMU function
and all units that are accessed through the MMU
(e.g., memory and other I/O devices) and report the
results to the system console. Another advantage of
this approach is that upon power-up of the system,
the MMU mapping must be initialized. This action
can be done in hardware, but it is cheaper to have the
software perform this task. Upon power-up, the pro¬
cessor receives a RESET signal and fetches a restart
vector containing an initial program counter and a
supervisor stack pointer. These first four logical
address references are forced to come from a special
bootstrap ROM and point to a bootstrap program
located in the test and boot space. This program can
initialize the MMU to the desired mapping before any
of the logical addresses that are mapped by the MMU
are used. This requires accessibility to the MMU in
the test and boot space. Since the test and boot space
is not under control of the protection mechanism of
the MMU, special hardware must ensure that an ad¬
dress reference falling in the test and boot space is
legal only in the supervisor state. In the user state a
bus error must abort the address cycle. Figure 7
shows this logical to physical address translation
scheme.

June 1987
27

Amore

MMU architecture
As we have seen above, the MMU will actually

have to support three spaces (PO, PI, and S), whereas
the part of the logical address space occupied by the
test and boot space will need no mapping besides the
rudimentary protection mechanism that allows access
only when the processor is in the supervisor state.

Our MMU accommodates PO, PI, S, and test and
boot spaces in the total logical address space of 16M
bytes (Figure 8). The PO space (for code and data)
and the PI space (for the stack and user structure)
are conceived as a single P (private) mapping con¬
sisting of 2K pages, each 2K bytes long, for a total of
4M bytes. The S (shared) space also consists of 2K
pages of 2K bytes each, totaling 4M bytes. A part of
this space is reserved for DMA purposes, although
this has no consequences for the MMU. Four mega¬
bytes are reserved for the test and boot space, which
is more than sufficient.

Shared space (S). The shared space is mapped by
means of a conventional page table mechanism,

whereby the table itself is contained in fast special-
purpose memory chips residing in the MMU. The 4M
bytes of the S space require 2K entries, each describ¬
ing a 2K-byte page in physical memory. Figure 9
shows a logical address in the S space and its trans¬
lation to physical space. The fields in the page table
entries are

• INV, the invalid field (bits 29-24), in which INV
= = 0 indicates a valid entry,

• UW, the user write access field (bit 23),

Logical address space

0 4M 8M 12M 16M

P space Reserved S space Test and boot

Figure 8. The logical address space in our MMU.

Logical address

23 22 21 11 10

Physical address

Figure 9. Mapping in the shared (S) space.

28
IEEE MICRO

• UR, the user read access field (bit 22),
• SW, the supervisor write access field (bit 21),
• R, the referenced bit (bit 19),
• M, the modified bit (bit 18),
• PFN, the physical page frame number (bits 10-0),

and
• X, the reserved bits (bits 31-30, 20, and 17-11).

The page table entries constituting the S space are ac¬
cessible in the test and boot space as long words.

Private space (P). The P space occupies the logical
address region from 0 to 4M - 1, and the next 4M ad¬
dresses are reserved for future extension of the P
space. The mapping used in the P space is process-
dependent and must be altered on every process
switch. In our MMU, the P0 space starts at logical
address location 0 and grows upwards, and the PI
space starts at logical address location 4M - 1 and
grows downwards (Figure 10).

Each process has its own page table for the P space
in main memory. A memory management mechanism
that could directly access these page tables located in
physical memory would be very difficult to imple¬
ment and would certainly require some kind of trans¬
lation buffer. If we could provide a hardware page
table like the one for the S segment for each 4M pro¬
cess space, we would only have to indicate to the
MMU which table it has to use for the current pro¬
cess. Implementation of this mechanism would re¬
quire a vast number of high-speed RAM chips, and it
is not feasible with the present state of the art.

The rotate mechanism. Implementation of only
one page table (which is feasible) would mean that
many entries could be supplied with a new value on
each process switch. Each entry that is invalid in both
the current process and the new process could remain
unchanged. However, all entries that are used by the
new process, and those entries that are unused by the
new process but were used by the current process,
would have to be changed. In the worst case, this
would mean that 2K entries would have to be changed,
which would be quite time-consuming, especially if
context switching were frequent.

In our MMU, we found a compromise between the
last two solutions. One should realize that of the
possible 2K entries describing 4M bytes, only a small
amount will be used by most programs. Measure¬
ments at our laboratory have indicated that the
typical Unix program is small (that is, that P0 is 32K
bytes and PI is 8K bytes). Many entries in most pro¬
grams therefore will have to be initialized to invalid.
Furthermore, it is possible to limit the maximum
number of processes—say 64—that can be loaded
into core (swapped in). If we have 64 programs with
an average size of 64K bytes (i.e., requiring 32 en¬
tries), 2K hardware page table entries will suffice,

4M P space

-> 0

P0

->
<-

Unused

->
<-

PI

-> 4M — 1

Figure 10. The private (P) space.

when entries are allocated as optimally as possible.
A step in this direction is made in the way shown in
Figure 11. The hardware page table is indexed with
the logical page number plus an offset corresponding
to the current process number multiplied by 32, so
that indices higher than 2047 will be wrapped around
(rotated).

The problem is that processes can need page table
entries that are already being used by another pro¬
cess. This is solved by giving the hardware page table
entries an additional process number field and by
supplying the MMU with a current process number
register (also required for the appropriate offset
value) that is loaded by the software with a new value
on each process switch. When the current process
generates an address resulting in a page table entry
with a process number that does not correspond to
the current process number, an abort signal is gener¬
ated to the processor. The bus error exception
handler routine recognizes this situation and fills the
faulting entry. The MMU, along with the software
layer, functions as a cache for the actual page tables
in main memory and is comparable to a direct map¬
ping mechanism.13 The resulting addressing mecha¬
nism is depicted in Figure 12. The page table entry
contains the same fields as the one in the S space,
except for the INV field, which is named PSN# (pro¬
cess number).

The mapping process proceeds as follows:

(A) The MMU combines the process number and
the logical page number into an index in its hardware
page table.

June 1987 29

Amore

(B) If the page table entry contains a process num¬
ber matching the current process number, the map¬
ping process is continued at step D, else step C.

(C) The MMU generates a bus error, after which
the processor enters the exception handler routine.
This routine determines from the exception stack
frame the faulting logical address and the intended
action. It now fetches the software page table entry
for the page containing the faulting address. If the in¬
tended action is illegal according to this entry, step E
is taken; otherwise, it means that the MMU faulted
because of a process number mismatch. The appro¬

priate entry in the hardware table is now filled and
the exception handler returns, causing the aborted
memory cycle to be rerun and resulting in steps A, B,
and D! (The modified and referenced information
contained in the replaced hardware table entry must
be saved.)

(D) The process number matches, which means
that the information contained in this page table en¬
try is valid for this process. (Totally unused entries
have the reserved process number 0.) If the intended
action (read/write in the supervisor or user state) is
not allowed according to the access bits, step C is

Process no.O

P space

Paged

Pagel

Page 2046

Page 2047

Process no. 1

Pspace

PageO

Pagel

Page 2046

Page 2047

->

Process 0 PageO 0

Process 0 Page 1 1

Process 1 Page 2046 30

Process 1 Page 2047 31

Process 1 PageO 32

Process 1 Page 1 33

Process 0 Page 2046 2046

Process 0 Page 2047 2047

Figure 11. The P space with rotating entries.

30
IEEE MICRO

taken. Otherwise, the modified (M) and referenced
(R) bits are updated (after the process number
match), and the physical page frame number (PFN) is
combined with the “byte in page” address part of the
logical address to form the complete physical
address.

(E) A bus error is raised because of an access viola¬
tion (indicated via the MMU status register) or because
of a detection by the software that the desired page
was not loaded in physical memory (i.e., that a normal
page fault has occurred). When a bus error is raised,
the appropriate actions are taken by the operating sys¬

tem. These actions are not relevant to the MMU at this
point.

Performance considerations. The MMU hardware
for the P space acts as a cache mechanism on the ac¬
tual page tables in physical memory. From the fact
that it contains only those entries for virtual pages
that are actually loaded in physical memory, and
from the fact that most processes will use only a
small part of their maximum virtual address space,
we can conclude that bus errors resulting from a
cache mismatch are very rare. However, the action

Process number Processor logical address

65 2 11 11

Bus error

31

June 1987

Amore

needed on a cache miss is rather time-consuming (the
equivalent of about 300 memory cycles or 150 ns). It
consists of the following steps:

• bus error acceptance plus a vector load
operation,

• pushing of the 29 words forming the long stack
frame of the MC68010,

• the saving of the registers that are going to be
used by the exception handler routine,

• the determination of the appropriate hardware
page table entry according to the faulting address
stored in the exception stack frame,

• the recognition of a cache mismatch fault among
other fault conditions such as protection violations,

• the fetching of the length and location of the ap¬
propriate software page table and the selection of the
right entry if this entry is valid,

• the restoring of the entry in the hardware page

table,
• the reloading of the saved registers, and
• the resumption of the aborted instruction accord¬

ing to the exception stack frame (i.e., the popping of
the 29 words).

The worst-case procedure is performed if, due to
actions in the past, the MMU cache no longer con¬
tains entries for the just-restarted current process. If
TV virtual address pages are referenced (with each
page able to be referenced many times) during the
time slice of this process, a maximum of TV cache
misses occur, resulting in TV times 300 memory cycles.
If, after a cache mismatch, a page does not appear to
be loaded in physical memory, a page-in must be per¬
formed. After this page-in, both the software and
hardware page table must be updated, but the over¬
head required for this is negligible compared to the
total page-in time.

(to CPU) (Physical address strobe)

To/fromCPU
Physical addresses

Figure 13. Block diagram of our MMU.

32
IEEE MICRO

Test and boot space. The test and boot space oc¬
cupies the region from 12M to 16M - 1. Logical ad¬
dresses falling in this range are used to directly ad¬
dress physical memory (including memory-mapped
I/O registers), which is bound in hardware to the test
and boot space. The test and boot space mapping is
predetermined in hardware and requires no initializa¬
tion. Its “protection” mode is hardwired to allow ac¬
cesses only when the processor is in the supervisor
state. Objects addressable in the test and boot space
cannot be accessed in the other spaces.

Implementation of the MMU
Here, we present a short description of the hard¬

ware implementation of the MMU; other details of
the actual hardware design can be found in de Rijk.14
Figure 13 illustrates the hardware implementation.
The signals to the left are connected to the CPU, and
the lines at the right lead to the internal physical ad¬
dress bus. We can see that the MMU is composed of
four parts:

• A decoding section detects the appropriate space
(P, S, or test and boot) of the current memory cycle
and determines if this space is valid.

• Address generation logic selects the appropriate
entry in the memory array. This section also contains
the necessary program space number register (PSN#).

• A memory array holds the two page tables (one
for the S space and one for the P space).

• Validation logic determines if the selected page
table attributes are valid for the current address cycle.
If they are not, a bus error is generated to the CPU.

The total address translation time is 90 ns.

Our MMU represents a useful alternative to ex¬
isting single-chip implementations. Since the
main goal of the single-board computer into

which this MMU is integrated is to provide cheap
processing power, the issues discussed here are more
relevant than in the case of a single computer built to
serve as a research vehicle. The RAM chips initially
used in our MMU caused a total address delay of 120
ns, but faster, 45-ns versions have become available.
By using these chips, we have reduced the total ad¬
dress delay time to 90 ns. The total number of chips
we used to implement the MMU amounts to about
35, including the RAM chips. The total cost of the
MMU’s components is about $60.

Our MMU offers several advantages:

• It has an address delay of 90 ns compared to the
address delay of 217 ns for the MC68451 and
NS16082.

• It utilizes a paging technique for both the user

and the supervisor space that results in efficient
memory usage, especially when a virtual memory
strategy is used.

• It makes a fast process switch possible.

• It can allow for permanently resident, shared
libraries in the supervisor space, since the S space is
visible to user programs and the page table entries in
the S space contain a user read and write protection
bit.

• It implements a reference bit, which is very useful
when designing a paging strategy. (The VAX architec¬
ture lacks this bit.)

Moreover, the current single-board implementation
of our system makes it possible to perform DMA
through the MMU.

However, our solution also has a few disadvantages:

• No more than 64 processes can be swapped in,
although this is not a severe restriction for a single¬
board system.

• The price of our MMU is no lower than that of
existing single-chip MMUs, and in time the price of
single-chip units will drop.

• Our design utilizes a large number of chips con¬
suming a substantial amount of board space and
power. The use of gate arrays could improve this,
however.

• No Unix version exists that is already adapted to
our MMU, although Berkeley Unix could be changed
relatively easily to meet its requirements, provided
enough physical memory is installed to hold the
massive, permanently resident kernel code (138K
bytes) and fast disks are used.

The current state of our project is that Unix
System V has been modified to support the MMU in
such a way that pages can be scattered throughout
main memory during the time they have to be resi¬
dent; that is, demand paging is not used but a scat¬
ter/gather approach is taken instead. This is a first
step toward full demand paging, and it has been
planned as a modification of a System V demand¬
paging release that is not available yet.

Several subjects have not been discussed here and
could be investigated in future work:

• The hit rate of the MMU cache for the P space.
• Alternative page sizes.
• The allocation of process numbers to processes.

If the total of 64 swapped-in processes is not reached,
one could allocate process numbers with the largest
gaps possible (e.g., two swapped-in processes could
get process numbers 0 and 31).

• Hardware improvements (possibly using new
chips). These could result in smaller delay times and
fewer components.

• Hardware support for automatically loading a
table entry upon a cache miss. This could be similar
to that provided by the NS 16082.

June 1987 33

Amore

• Space extension. If the 4M-byte P space were ex¬
tended to 8M bytes, it would be possible to extend
the total number of swapped-in processes that could
be allowed or increase the offset factor from 32 to 64
pages, m

References
1. J. Peterson and A. Silberschatz, Operating Systems,

Addison-Wesley, Reading, Mass., 1983.

2. MC68451 Memory Management Unit Data Sheet,
Motorola, Inc., Austin, Tex., Sept. 1, 1979.

3. NS16082 Memory Management Unit Data Sheet, Na¬
tional Semiconductor, Santa Clara, Calif., Mar. 1982.

4. P.M. Lu et al., “Architecture of a VLSI MAP for
BELLM AC-32 Microprocessor,” Digest of Papers—
Compcon Spring 83, Computer Society Press,
Washington, D.C., pp. 213-217.

5. VAX Architecture Handbook, Digital Equipment
Corp., Maynard, Mass., 1981.

6. VAX Hardware Handbook, Digital Equipment Corp.,
Maynard, Mass., 1980.

7. J. Lions, “A Commentary on the UNIX Operating
System,” and “UNIX Operating System Source Code,
Level Six,” Dept, of Computer Science, University of
New South Wales, 1977.

8. W.R. Peppinck, “Modeling the UNIX Kernel,” master’s
thesis, Laboratory of Switching Technique and Com¬
puter Architecture, Delft University of Technology, The
Netherlands, 1984.

9. O. Babaoglu and W. Joy, “Converting a Swap-Based
System To Do Paging in an Architecture Lacking Page-
Referenced Bits,” Operating Systems Rev., Dec. 1981,
pp. 78-86.

10. J. van Someren, “Paging in Berkeley Unix,” internal
report, Laboratory of Switching Technique and Com¬
puter Architecture, Delft University of Technology, The
Netherlands, Feb. 1984.

11. MC68010 Microprocessing Unit Data Sheet, Motorola,
Inc., Austin, Tex., 1981.

12. A.S. Tanenbaum, Structured Computer Organization,
Prentice-Hall, Englewood Cliffs, N.J., 1984.

13. A.P. Pohm and D.P. Agrawal, High-Speed Memory
Systems, Prentice-Hall, Englewood Cliffs, N.J., 1983.

14. J. de Rijk, “Hardware Description of the SP Unix
System,” master’s thesis. Laboratory of Switching
Technique and Computer Architecture, Delft University
of Technology, The Netherlands, 1984.

Further reading
“UNIX Time-sharing System,” Bell System Tech. J.,
July-Aug. 1978, Part 2.

H. Hellerman and T.F. Conroy, Computer System Perfor¬
mance, McGraw-Hill, New York, 1975.

G.J. Dekker is a member of the kernel support group of
Associated Computer Experts BV, a software house in The
Netherlands specializing in Unix. He is involved in porting
parts of Unix that are dependent on particular machines to
other machines having diverse MMUs, and he is helping de¬
velop a Unix local area network and a Unix windowing sys¬
tem. He holds an MSEE from the Delft University of
Technology, The Netherlands.

A.J. van de Goor is a professor in computer sciences at the
Delft University of Technology. Prior to this appointment,
he served 11 years with Digital Equipment Corporation and
IBM. His main interests are computer architecture, high-
level-language machines, hardware testability, and multi¬
processor systems. He received an MSEE degree from Delft
University of Technology and MSEE and PhD degrees from
Carnegie Mellon University.

Questions about this article can be directed to van de Goor at the Department of Electrical Engineering, Delft University of
Technology (TH Delft), PO Box 5031, 2600 GA Delft, The Netherlands.

Reader Interest Survey

Indicate your interest in this article by circling the appropriate number on the Reader Interest Card.

High 150 Medium 151 Low 152

34 IEEE MICRO

By implementing a capability-
oriented addressing scheme, tagged

storage, and a single-level-store
approach to memory management,
and by providing hardware support
for multitasking, this architecture

reduces the semantic gap.

o

THE
o

\Q

OF A

CAPABILITY-BASED

MICROPROCESSOR

SYSTEM
Paolo Corsini, University of Pisa, Italy

Lanfranco Lopriore, Consiglio Nazionale delle Ricerche, Italy

Computer designers have often paid too little attention to reducing the distance be¬
tween architectures and their operating environments.1 This distance, the so-called
semantic gap, is a problem that involves basic aspects of computer organization such

as operating systems, programming language implementation, and programming environ¬
ments. In particular,

• operating systems are poorly supported in their primary functions, such as memory
management and protection, separation of privileges between tasks, interrupt servicing, and
resource sharing,

• compilers receive little help in implementing basic concepts of modern high-level lan¬
guages such as data abstraction and multitasking, and

• programmers obtain little assistance from the underlying machine in the test and debug
phases of software development.

Here, we present the results of research aimed at the definition and implementation of a
microprocessor-based advanced architecture whose main goal is the reduction of the seman¬
tic gap. This architecture is oriented toward high-level languages supporting modular decom¬
position of programs, user-defined data abstraction, and concurrency. Its salient features are
a capability-oriented addressing scheme, an approach to memory management based on the
concept of a single-level store, implementation of tagged storage by the tagging of memory
segments, and significant hardware support for multitasking.

We present this architecture with particular reference to object types and memory manage¬
ment, and we evaluate it according to how well it reduces the semantic gap. We also show
how it has been implemented as a research prototype in which the central processing unit has
been built around an off-the-shelf microprocessor and in which an intelligent memory device
autonomously supports the memory management functions.

June 1987 0272-1732/87/0600-0035$01.00 © 1987 IEEE 35

Capability-based Microprocessor

The architecture
In our architecture, we have departed from the

traditional von Neumann concept of a uniform, linear
storage space. Instead, we follow an object-oriented,
capability-based approach.2-3 Essentially, tasks see the
storage space as a single pool of objects. The architec¬
ture defines a set of mechanisms that make it possible
to create and delete objects. When a new object is
allocated, a unique identifier is assigned to that object.
This identifier is never modified during the life of the
object and, after the object has been deleted, is never
used to name another object.

Objects are supported by a very large segmented vir¬
tual memory space. This space is partitioned into
areas. Each implementation of the architecture (that is,
each machine) is configured so it can allocate the seg¬
ments of a specific area. Areas are provided mainly to
support unique identifiers, even across the boundaries
of a single machine. If any kind of information flow is
to occur between two or more machines (through a
network, or even just through a transportable storage
medium such as a tape), those machines must be as¬
signed to as many different areas.

Each object is contained entirely in a single segment,
and the address of this segment in the virtual space is
equal to the identifier of the object. Each segment is
partitioned into three fields: a length field, a tag field,
and an internal representation field (Figure 1). The
contents of the length field specify the size of the inter¬
nal representation field. The contents of the tag field
specify the type of the object implemented in the seg¬
ment. And the contents of the internal representation
field represent the value of the object.

A task can access a given object only if it holds a
capability for that object. A capability is an un-

Length field

Tag field

Internal
representation
field

Figure 1. Virtual memory segment implementing an object

whose identifier is ID. Both the length and the tag fields are

at negative offsets, whereas the internal representation field

extends to positive offsets, from offset 0 to offset L.

forgeable, protected pointer that includes not only the
object identifier, ID, but also an access right specifica¬
tion, AR. The architecture guarantees the integrity of
capabilities, and the only modifications it allows are
restrictions of access rights. However, it does permit
capabilities to be freely copied so that access privileges
can be transmitted.

A set of virtual processors is implemented by the
hardware of the CPU. This hardware performs the
operations of one virtual processor at one time, and
this processor is called the running virtual processor.
Each virtual processor is provided with its own set of
capability registers. A capability register can store a
long capability. This is a quadruple {ID,L,Tag,AR}
obtained by extending the capability {ID,AR} by
means of the quantities L and Tag, which are con¬
tained in the segment implementing the object identi¬
fied by ID. To reference an object in memory, a task
attached to the running virtual processor must load a
capability for that object into a capability register of
the virtual processor.

Seven object types are supported by our architec¬
ture, and their operations are implemented by machine
instructions. These types are the code space, the data
space, the capability space, the task descriptor, the
virtual processor image, the family factory, and the
family root.

Code spaces, data spaces, and capability spaces.
Code spaces store instructions in executable form.
Data spaces allow all the usual arithmetical and logical
operations to be performed on them. Capability spaces
allow capabilities to be stored in memory. A capability
space is a collection of capabilities. A capability in a
capability space can be converted into a long capability
and then loaded into a capability register to access the
object it references. Conversely, a long capability in a
capability register can be converted into the short for¬
mat and then stored into a capability space.

Multitasking. Multitasking is supported by task
descriptors and virtual processor images. The entire
state of a single task (including the task stack) is stored
in a task descriptor. The contents of a virtual processor
image specify whether a task is attached to the virtual
processor associated with that image. Attaching a task
to a virtual processor means loading the state of that
task from the task descriptor into the virtual processor.
Detaching the task means copying the task state from
the virtual processor into the task descriptor. In this
way, different tasks can be attached to a given virtual
processor at different times. The CPU can be caused
to execute a given virtual processor, and this results in
executing the task attached to that virtual processor at
that t’me. As we will show later, the dualism of task
descriptors and virtual processor images is aimed
mainly at effective management of the set of virtual
processors implemented by the CPU hardware.

36 IEEE MICRO

Object types

Code spaces. A code space stores instructions in
executable form.

Operations. A single action is defined on a code
space—that is, the instructions contained therein.
This action is made possible by the access right EX¬
ECUTE. The operations defined on code spaces
relate to program control.

An example is the CALL operation. CALL trans¬
fers control to the instruction at a given offset of a
given code space (Figure A). The old contents of the

program counter are saved in a stack, the domain
stack, which stores information about control trans¬
fers inside the same domain.

Data spaces. A data space is a collection of en¬
tries. Each entry contains a data value.

Operations. All the classical arithmetical and logical
operations are defined on data spaces. An operation
causing a reading or writing action on the contents of
a given data space is made possible by the access

Figure A. Actions involved in
the execution in the rth virtual
processor VPr of the call-to-
subroutine instruction CALL
((c)) W. This instruction trans¬
fers control at offset u> of the
code space addressed by CR^
(i.e., the cth capability register
in VPr). The program counter
PClr> is partitioned into a seg¬
ment number field and an off¬
set field. The contents of the
segment number field specify
the capability register storing
the instruction to be fetched
next, at the offset specified by
the contents of the offset field.
The execution of this instruc¬
tion loads the quantities c and
w into the segment number
field and the offset field, respec¬
tively. The old contents of
PCW are saved in the data
space addressed by the capabil¬
ity register, say CR($, whose
index m is specified by the con¬
tents of R%. This data space
implements the domain stack,
and the top of the stack is
pointed to by the contents of

June 1987 37

Capability-based Microprocessor

right READ or WRITE for that data space.
Examples of operations for the data space type are

LOAD and STORE. LOAD accesses the word at a
given offset of a given data space and loads the con¬
tents of this word into a general register. This opera¬
tion is made possible by the access right READ for
the data space. STORE copies the contents of a
given general register into the word at a given offset
of a given data space. This operation is made possi¬
ble by the access right WRITE for the data space.

Capability spaces. A capability space is a collec¬
tion of entries. Each entry contains a capability.

Operations. The operations defined on capability
spaces make it possible to move capabilities between
capability registers and the main memory, and to
transfer control from one subject to another.

LOAD_CAPABILITY converts the capability
stored in a given entry in a capability space into a
long capability. This long capability is then loaded
into a capability register (Figure B). This operation is
made possible by the access right TAKE for the capa¬

bility space.
STORE_CAPABILITY converts the long capabil¬

ity contained in a given capability register into a ca¬
pability. This capability is then stored in memory, into
an entry of a given capability space. This operation is
made possible by the access right GRANT for the
capability space.

ACTIVATE_SUBJECT allows a subject S to acti¬
vate another subject S' of the same task on the
same virtual processor. The state of S is saved into
the task stack inside the descriptor of the task. This
stack contains information about control switches
across domain boundaries. The capability for the
base of the domain of S' is loaded into a capability
register. Control is transferred at offset 0 of the code
space referenced by the u>th capability in the base of
S' (w is a parameter of the operation). Execution is
made possible by the wth activate access right,
namely ACTIVATE_w, for the base.

DEACTIVATE_SUBJECT transfers control back
to the subject whose state is stored at the top of the
task stack. The state of S is restored with quantities
popped from the stack.

Figure B. Actions involved in
the execution of the instruction
LOAD_CAPABILITY #«c»,
((c')) w. The capability stored in
entry w of the capability space
addressed by CR$ is extended
by means of the contents of the
L and Tag fields of the segment
implementing the object
referenced by that capability
and then loaded into CR$.

Capability registers

I «

38 IEEE MICRO

Virtual processor images. A virtual processor
image contains the name of a virtual processor and a
flag. This flag, if set, specifies that a task is attached
to that virtual processor.

Operation. RUN_VP starts execution of the vir¬
tual processor associated with a given virtual pro¬
cessor image. This operation is made possible by the
access right RUN for the image.

Task descriptors. A task descriptor stores the
entire state of a single task (including the task stack).

Operations. ATTACH_TASK attaches a task to
the virtual processor associated with a given virtual
processor image. The state of the task is loaded from
its descriptor into the virtual processor, and the flag
inside the image is asserted. This operation is made
possible by the access right ALLOCATE for the im¬
age and the access right ATTACH for the descriptor.

DETACH_TASK detaches the task attached to
the virtual processor associated with a given virtual
processor image. The state of the task is copied from
the virtual processor into the descriptor of that task,
and the flag inside the image is cleared. This opera¬
tion is made possible by the access right DEALLO¬
CATE for the image.

Family factory. A single object of the family fac¬
tory type exists throughout the life of the system. At
any given time, this object contains the name of the
next family to be generated.

Operation. A single operation, GENERATE_
FAMILY, is defined on the family factory.
GENERATE__FAMILY allocates the family whose
name is contained in the family factory. The contents
of the factory are then incremented. Thus, the fac¬
tory always contains the name of the next family to
be generated. This operation, which is made possible
by the access right GENERATE for the family factory,
returns a capability for the root of the family allo¬
cated. This capability includes three access rights:
ENABLE, USE, and INITIALIZE. These access
rights are relevant to memory management.

Family roots. The root is the first object allocated
in a family. At any given time, it contains the iden¬
tifier of the next object to be created in that family.

Operations. After a root has been allocated by the
GENERATE_FAMILY operation, it must be initial¬
ized by executing the INITIALIZE_ROOT opera¬

tion. INITIALIZE_ROOT sets the root to contain
the identifiers of the first object to be allocated inside
the family after the root itself. This operation is made
possible by a capability for the root with the access
right INITIALIZE. The operation modifies the access
right field of this capability to contain the whole set of
the create access rights. These access rights permit
execution of the create operations.

Five create operations make it possible to allocate
and initialize new objects.

CREATE_CAPABILITY—SPACE allocates a
capability space in the family of a given root and
returns a capability for this space. This operation is
made possible by the access right CREATE_CA¬
PABILITY_SPACE for the root. The capability
space is initialized to contain null capabilities (i.e., ca¬
pabilities whose identifier fields are formed entirely of
l’s). The operation may fail, however, and this oc¬
curs if the size of the capability space to be created is
greater than the size of the residual free portion of
the family.

CREATE_CODE_SPACE, CREATE_DATA_
SPACE, CREATE_TASK_DESCRIPTOR, and
CREATE_VP_IMAGE both allocate and initialize a
code space, a data space, a task descriptor, and a
virtual processor image. The actions involved in the
execution of these operations are suggested by their
names.

Four memory management operations allow the
running task, say task T, to manage storage re¬
sources according to its own memory requirements.

ENABLE FAMILY allows T to enable a given
family. Execution of this operation fails if there is not
enough free space in the bulk memory. This opera¬
tion is made possible by the access right ENABLE for
the root of the family.

USE_FAMILY allows T to state that it is a user of
a given family. Execution causes an attempt to open
the family. This attempt fails if there is not enough
free space in the main memory and if there is no
open family suitable for being swapped out (i.e., no
family used by at most one process that is blocked).
This operation is made possible by the access right
USE for the root of the family.

RELEASE_FAMILY allows T to state that it no
longer uses a family. The family is not swapped out
immediately but will be swapped out eventually,
when there is a lack of free space in the main
memory. This operation is made possible by the ac¬
cess right USE for the root of the family.

REMOVE-FAMILY allows T to remove a family.
Execution frees the memory areas reserved for stor¬
age of the family in both the bulk memory and, if the
family is open, in the main memory. This operation
is made possible by the access right REMOVE for the
root of the family.

June 1987 39

Capability-based Microprocessor

Protection domains. The capabilities inside a capa¬
bility space may reference objects of any type and, in
particular, other capability spaces. In this way, capabil-

Segmented virtual
memory space

u.
>

E
CO

,D «

ID ®

ID.(F)= ID
/ + i

<F) . |(F)
/

Figure 2. Organization of the segmented virtual memory
space. The first object of a family F is the root of that family.

At any given time, the root contains identifier ID'y’of the

next object (say, the ith object) to be allocated in F. After

allocation of this object, the root is updated to contain the

identifier ID ;+?!• This is given by the relation ID =

ID^ + 1*^, where 1^ is the dimension (in bytes) of the ob¬

ject identified by ID®. Flowever, allocation can actually be
carried out only if no family overflow occurs.

ity spaces can be organized into arbitrarily structured
graphs. A protection domain is a graph shaped in such
a way that all the objects it references can be reached
by starting from a specific capability space (called the
base of the domain), by means of the capabilities con¬
tained therein. When a task is attached to a given vir¬
tual processor, the capability registers of that virtual
processor must store both the capability for the de¬
scriptor of that task and the capability for the base of
a domain. These two capabilities together univocally
identify the subject—that is, the pair {task, domain}
—active on that virtual processor. A subject S can ac¬
tivate another subject S' of the same task on the same
virtual processor. The state of S is saved onto the task
stack. Conversely, S' may deactivate itself and transfer
control back to the subject S, whose state is stored on
the top of the task stack.

Object creation. Memory management strategies are
based on objects being grouped into families. Families
are fixed-size units used for swapping between the bulk
memory and the main memory as well as for garbage
collection. A few families are generated by the boot¬
strap firmware; these are called bootstrap families, and
the objects they contain relate to the resident portions
of the system kernel. One such object is the family fac¬
tory. At any given time, the family factory contains
the name of the next family to be generated. Genera¬
tion allocates the first object in the new family. This
object, the root of the family, belongs to the family
root object type; at any given time, it contains the
identifier of the next object to be allocated in the fami¬
ly (Figure 2). A capability for the root makes it possi¬
ble to allocate and initialize new objects in the family.

Memory management. A given family is enabled
when a portion of the bulk memory is actually re¬
served for storage of that family. An enabled family is
open when it also resides in the main memory; other¬
wise, it is closed (if it is stored only in the bulk
memory) or it is swapping in or swapping out (if it is
being copied from the bulk memory into the main
memory or vice versa). An enabled family may be
removed to free its portions of the bulk memory and,
possibly, main memory; thereafter, all the objects in
that family are lost (it will never be possible to refer¬
ence them again). An object belonging to a given fami¬
ly can be accessed only if that family is open (always
the case for a bootstrap family). A task may declare
that it is a user of a given family. This means that once
the family has been opened, it can be swapped out only
if the task is its sole user and it is blocked.

Each task manages its own memory requirements by
means of a set of operations—the memory manage¬
ment operations—that works on family roots. These
operations allow the task to enable a family, become a
user of a family, release (that is, cease using) a family,
and remove a family.

40 IEEE MICRO

Address, data, and control bus

Figure 3. Hardware configuration of the prototype of the architecture.

Implementing the architecture

The hardware configuration of a prototype of our
architecture is shown in Figure 3. A central processing
unit accesses a pool of storage resources. These consist
of an intelligent memory device (IMD) supporting
memory virtualization, a set of read-only and read/
write memory banks reserved for the storage of boot¬
strap families, and the memory-mapped interfaces of
source/sink I/O devices (each interface being ad¬
dressed in the same way as a data space in a bootstrap
family).

The central processing unit. The CPU is based on a
Zilog Z8001 microprocessor.4 Ad hoc logics provide
for capability processing and emulate the instructions
implementing the operations of most object types. The
instruction set consists of the following:

• All the standard instructions of the Z8001.
Essentially, these implement the operations relating to
code and data spaces.

• Special instructions, wholly emulated inside the
CPU. These support the operations of all the other ob¬
ject types defined by the architecture, the only excep¬
tions being the memory management operations.

• Memory management instructions. These imple¬
ment the memory management operations. They are

fetched by the CPU but are actually executed inside
the IMD.

At any given time, the instruction to be fetched next is
addressed by the contents of the program counter of
the virtual processor running at that time. The pro¬
gram counter consists of a segment number field and
an offset field. The contents of the segment number
field specify a capability register in the set of capability
registers associated with the virtual processor. This
capability register references the code space being exe¬
cuted, and the offset of the instruction inside this code
space is specified by the contents of the offset field. A
similar mechanism is used to access an operand inside
a data space. An address, as included in the instruction
formats of the Z8001, consists of a segment number
field and an offset field. The contents of the segment
number field specify the capability register referencing
the data space involved in the access.

Besides the program counter and the capability reg¬
isters, the architectural interface of each virtual
processor includes all the registers defined by the ar¬
chitecture of the Z8001. (The only exception is that the
system/normal bit is not supported.) Moreover, a
priority register specifies the priority of the task at¬
tached to the virtual processor. (As will be shown
shortly, task priorities are relevant to interrupt han¬
dling.) Virtual processors are supported by a scratch¬
pad read/write memory forming an array of capability

June 1987 41

Capability'based Microprocessor

registers (Figure 4). Moreover, a read/write memory
implements a save area for the contents of the general-
purpose registers, the program counter, and the flag
and control registers of all nonrunning virtual pro¬
cessors. Finally, an ad hoc read-only memory stores
the firmware emulating the special instructions. When
this firmware is being executed, the microprocessor
runs in its supervisor state; therefore, the supervisor
state is considered a microprogram state.

Interrupt sources are partitioned into priority
classes. An interrupt request coming from a source
belonging to a given class, say class C, is accepted only
if the priority of the task attached to the running vir¬

tual processor is less than or equal to C. When ac¬
cepted, the request is converted into a call to a specific
task associated with class C, the interrupt task, and
permanently attached to the Cth virtual processor. Let
us examine this in greater detail. The name of the vir¬
tual processor that has been interrupted is pushed onto
a firmware-handled interrupt stack inside the CPU.
(This stack makes it possible to nest interrupts.) Then,
the name of the interrupting source is stored into a
general register; in this way, this name is made avail¬
able to the interrupt task. Finally, the Cth virtual pro¬
cessor is made to run. After having carried out the ac¬
tions implied by the interrupt request, the interrupt

ft

Figure 4. Logic diagram of the central processing unit.

42 IEEE MICRO

task may suspend itself by means of the parameterless
special instruction INTERRUPT_HANDLED. Execu¬
tion of this instruction consists essentially of accessing
the interrupt stack and popping the name of the vir¬
tual processor previously interrupted. This virtual pro¬
cessor is then made to run.

The intelligent memory device. The IMD is designed
to support memory management. The CPU transmits
the memory management instructions to the IMD by
means of a memory-mapped communication channel.
This channel consists of a few data spaces, all included
in the same bootstrap family. The IMD contains the

hardware and software resources it needs to execute
memory management instructions (and, in particular,
to perform family swapping) autonomously and in
parallel with the operations of the CPU. Suppose that
one such instruction is issued by a task / attached to
the running virtual processor. The CPU only needs to
transmit that instruction to the IMD and then switch
to run a different virtual processor. The IMD generates
an interrupt request upon completion of the execution
of the instruction. The interrupt task honoring this re¬
quest then returns control to t.

A block diagram of the actual configuration of the
IMD is shown in Figure 5. A Z8001-based computer

To/from address, data, and control bus

To/from interrupt bus

Figure 5. Block diagram of the intelligent memory device.

June 1987 43

Capability-based Microprocessor

Logical
address

inside an
instruction

(To the Z8001)

Figure 6. Translation of a logical address into a physical address in the memory banks. As a consequence of the way in which
objects are generated (see Figure 2), the name of the family of the object being referenced is specified by the most significant
bits of the identifier of that object. Moreover, the least significant bits represent the base of the segment implementing that ob¬

ject in the memory area in which the family is actually stored.

element inspects the communication channel by busy¬
waiting. After ascertaining the availability of an
instruction from the CPU, the computer element exe¬
cutes the software routines implementing that instruc¬
tion. (These are contained in the read-only memories
inside the computer element itself.) If the need arises
for a swapping action, the computer element simply
activates a direct memory access device, which then
performs the actual transfer of information between
the large storage units and the random-access memory
banks. This leaves the computer element free to start
execution of another instruction available in the com¬
munication channel.

Address translation. Figure 6 shows how a logical
address (as specified in a machine instruction) is trans¬
lated into a physical address in the memory banks. As
stated previously, a logical address consists of the
name i of a capability register and an offset w. A limit
violation checker compares the contents of the length
field of the capability register with the offset and even¬
tually generates a limit violation (actually, a segment
trap) to the Z8001. Since this is not the case, the name
of the family of the object referenced by the capability
register is used to access an associative map, the family
relocation map. This map is contained in the IMD. In
this way, the address of the portion of the main
memory reserved for that family is obtained. The base
of the segment implementing the object inside this

memory portion is then added to the offset and paired
with the address of the family to finally obtain the
physical address in the main memory.

Conceptually, the family relocation map should
have one entry for each family in the main memory.
Because technological constraints forbid fast
associative memories of such depth, the associative
behavior of the map is emulated as follows. A hash
table, called the family relocation table, is imple¬
mented via software in the read/write memories of the
computer element inside the IMD. The family reloca¬
tion map is a buffer in which recently used family
names are mapped into the corresponding memory ad¬
dresses. Each entry of the family relocation map con¬
sists of a tag field and an address field. The least
significant bits of the family name select a specific en¬
try of the map. The most significant bits are compared
with the contents of the tag field of this entry. If a
match is found, the address translation is successful
and the contents of the address field actually represent
the starting address of the family in the main memory.
Otherwise, an interrupt request is generated to the
computer element. As a consequence of this interrupt
request, the computer element performs a hash search
in the family relocation table and loads the missing in¬
formation into the family relocation map. Note that a
failure in this hash search means that the family is not
open; in this case, the access attempt to the main
memory is aborted and an interrupt request is sent to
the CPU for notification of the failure.

44 IEEE MICRO

Figure 7. Configuration of a domain D implementing an object O of the abstract data type T.

Evaluation of the architecture
We faced several major decisions in designing our

architecture. In particular, we had to devise strategies
to ensure that it actually addressed the semantic gap
problem.

Capability-based addressing. The major advantage
ensuing from a capability scheme for memory address¬
ing is effective runtime support for the implementation
of abstract-type objects.

User-defined data abstraction. The importance of
user-defined data abstraction as a major step toward

structured programming is now widely appreciated.
Facilities for the definition of abstract data types are
common features of modern high-level programming
languages. However, in a conventional addressing en¬
vironment, the encapsulation of an abstract object, as
specified by the high-level source code, is lost after
compilation into machine code. This is not the case in
a capability environment,5'6 in which a protection
domain hides the implementation of the object even at
runtime, throughout object life.

Let us refer, for instance, to an object O of the
abstract data type T. The configuration of domain D
implementing O is shown in Figure 7. Code spaces R,,

June 1987 45

Capability-based Microprocessor

k2,..„ R„ store the routine for the operations of type
T. Data spaces Pp P2.P„, contain the local
variables that form the internal representation of O.
Capability space PRM is used for the transmission of
the capabilities for both the input parameters and the
output parameters of the operations. The capabilities
for these objects are grouped together in the base BD
of D. To execute the rth operation, a subject S must
first store the capabilities for the parameters into
PRM. Then, it must activate domain D and start exe¬
cution of the routine contained in R;. This routine
then uses the capabilities in BD to read the value of the
input parameters, access the internal representation,
and store the results of the operation into the output
parameters. At completion of execution, the routine
returns control to S. In this way, the representation of
O may be accessed by the environment of the object
only through the operations of the type.

Control over distribution of access privileges. Con¬
trol over the distribution of access privileges is at the
single-object level. Granularity is, therefore, much
finer than in traditional architectures, which define
only a few protection states (supervisor and user states,
for instance). Any classification of programs as system
and user programs is given up. Each program has its
own set of access rights, and this set is the smallest one
allowing the program to carry out its job. (This is the
principle of least privilege.2) This feature can be im¬
portant for error confinement as well as for fault
detection, recovery, and retry. Moreover, it can provide
help in all phases of software development.

Object sharing. A task holding a capability for a
given object is free to transfer that capability to
another task. In this way, the latter gains access
privileges to the object. No intervention of the
operating system is required. Indeed, flexibility in
dynamic sharing of objects was the original reason for
the introduction of the concept of a capability.3

Dangling references. The identifier of a deleted ob¬
ject is never used again for another object. Any at¬
tempt to utilize a capability to access a deleted object
produces an access violation. Unique identifiers there¬
fore represent an effective solution to the problem of
dangling references.

Tagged memory. Every capability architecture must
somehow prevent unauthorized accesses to the internal
structure of capabilities.7 Indeed, alteration of the
contents of a capability may jeopardize the integrity of
the whole protection system. A simple solution to this
problem is to enforce separation of capabilities from
data. This separation may be achieved by codifying
the types of the entities contained inside an object in
all the capabilities referencing that object, by means of
different configurations of the access right fields. For

instance, a capability for a capability space
will never specify the access right WRITE, which
makes it possible to freely modify the contents of that
capability space.

A different approach consists of adding a one-bit
tag to each memory cell; this bit specifies whether that
cell contains a capability or not.2 This approach,
however, relies on specialized memory banks able to
store cell tags. Moreover, whenever a portion of the
main memory is swapped from/to the bulk memory,
the relevant tag information needs to be swapped too,
and this can be carried out efficiently only by ad hoc
hardware. These disadvantages make the tag approach
worth adopting only if it is used throughout the ar¬
chitecture, not only to separate capabilities from data
but also to mark the other object types supported by
the instruction set.8 Indeed, if the specification of the
type of an object is included in the object itself, it is
possible to check at runtime whether the operations
applied to that object are congruent with the object
type. This may be useful, for instance, for detecting
erroneous read accesses to uninitialized objects and for
facilitating program debugging.

Our aim has been to enjoy all the advantages of
such a type-safe environment but avoid the problems
created by tag storage.9 To this end, we have included
the specification of the type of each object in a tag
field within the segment implementing the object itself.
This approach does not imply any specialized tech¬
nique for information swapping. Moreover, with
respect to the approaches mentioned above, it has the
advantage of saving memory space. Indeed, with this
approach a type specification has to be given only
once for each object and does not have to be repli¬
cated in every capability for that object, or even in all
the memory cells in which the object is stored.

Support for multitasking. A considerable drawback
of capability-based systems is their need to convert a
capability into the appropriate physical address upon
each access to an object in memory. Most architectures
partially solve this problem by including capability reg¬
isters: for an object to be accessed, a capability for
that object must be loaded into one such register. The
contents of capability registers can be managed by ad
hoc instructions or loaded autonomously by the micro¬
code.7 Visible capability registers have a potential for
greater effectiveness. A drawback, however, is that a
great deal of information must be saved at each task
switch. This problem is even more serious if for kernel
components such as interrupt tasks we wish to main¬
tain the same degree of separation of privileges existing
for user tasks.

These considerations convinced us of the need to
make the CPU able to support several virtual proces¬
sors. Indeed, as long as a task is attached to a virtual
processor, that task can be run by issuing a single
machine instruction, without incurring the time over-

46 IEEE MICRO

head mentioned above.
The dualism of tasks and virtual processors allows

us to create more tasks than the number of virtual pro¬
cessors actually implemented by the hardware. When a
task T becomes ready and a virtual processor is avail¬
able, a scheduler attaches T to this virtual processor. If
a virtual processor is not available, the scheduler
detaches a task T' blocked with a low priority and at¬
taches T to the virtual processor freed in this way. By
working in this way, the scheduler will never detach a
high-priority task. This is true, in particular, for inter¬
rupt tasks, each of which is attached permanently to a
specific virtual processor.

Single-level store. A program written in a high-level
programming language supporting the decomposition
of programs into modules includes a great deal of in¬
formation concerning memory usage. For instance,
each module includes a visibility list specifying the
names of the other modules that module can access.
However, traditionally no such information is utilized
for memory management. Instead, the execution of
the machine code is inspected at runtime by an in¬
dependently developed memory management system.
This system tries to rebuild its own idea of the memory
requirement of the running task by utilizing its own
model of task behavior.10 We believe that a better
approach is

• to have the architecture include a set of memory
management instructions that allow the running task
to supply information concerning its own future need
of memory resources, and

• to have the compiler generate memory manage¬
ment instructions in the object code that are coherent
with the specifications of memory usage in the source
program.

As a matter of fact, the instructions for memory
management we have included in our architecture
allow tasks to move families of objects through a two-
layer physical memory hierarchy consisting of a fast-
access main memory and a disk-based bulk memory.
By doing so, these instructions implement the concept
of a single-level store.1 The salient features of this
approach are discussed below.

Object life. The life period of an object is indepen¬
dent from that of the task creating that object. The
object is deleted only when its own family is removed.
Arrays provide not only for storage of short-term,
small-sized objects in main memory but also for the
permanent storage of large amounts of data. (In the
latter case, files would be the traditional choice.) The
greater homogeneity that ensues leads to generality in
programs.1 For instance, we only need a single routine
even if the size of its parameters is such as not to allow
us to store them in main memory. (An ad hoc I/O
routine would have to be added in a conventional
memory environment.)

Object size. No lower limit is imposed by the ar¬
chitecture on average object size. This feature is essen¬
tial if we want to fully exploit the salient characteristics
of an object-oriented organization.11 A single table,
the family relocation table, allows us to carry out the
translation of the identifier of a given object into the
address of that object in the physical memory. The
number of entries in this table is equal to the number
of families that may reside in the main memory at the
same time. Each family has a capacity of 21? bytes; the
memory requirement for storage of the family reloca¬
tion table is, therefore, quite low. Moreover, the
dimension of families is independent of the average
memory requirements for storage of a single segment.
It follows that object size can be kept as small as
desired, up to a lower limit of a few bytes for small¬
sized object types, without congesting I/O devices with
a lot of swapping activities that each involve a small
amount of data.

On the other hand, the fixed dimension of families
implies an upper limit to object size. This drawback,
however, is easily obviated. A large object unsuitable
for storage in a single family is partitioned into a num¬
ber of smaller objects, and these are allocated to dif¬
ferent families. These smaller objects are included in
the same domain. Suppose we activate this domain to
carry out a specific operation on the composite object.
We need to open only those families that actually con¬
tain components required for the actions involved in
the operation.

Fragmentation. The size of a family is 213 bytes. In
the organization of a conventional system, swapping
units of such an unusually large size would be likely to
raise great fragmentation problems. In our approach,
the compiler has control over the creation of objects
inside families. As a result, fragmentation can be kept
to a minimum.

The RISC approach. At present, the debate con¬
cerning the supposed advantages of reduced-
instruction-set computer (RISC) architectures over
complex-instruction-set computer (CISC) architectures
seems far from resolution.12’13 The benefits claimed
for RISCs include higher code density, a consequence
of their shorter instruction formats. However, several
RISC instructions are often needed to express the ac¬
tions contained in a single CISC instruction. RISCs
can have smaller microprograms, leaving a larger chip
area that can be profitably used for features such as
on-chip caches and pipelining. However, it is probably
far easier to enhance the performance of high-cost
functions such as floating-point operations by ad hoc
logic in a CISC architecture than it is in a RISC one.

The well-known fact that a few instruction opcodes
cover most instruction executions suggests that a RISC
design can be profitably tailored to a specific program¬
ming language. But it may well be difficult to maintain

June 1987 47

Capability'based Microprocessor

the same advantages across a multiplicity of languages,
since the sets of highly used instructions in those lan¬
guages may differ substantially. (For instance, the
Inmos Transputer RISC architecture is designed to
support a specific programming language, Occam.) In
compiler writing, an orthogonal instruction set simpli¬
fies code generation, and a hardware-supported high-
level operation on a data type is often translated into a
single instruction. However, a complex instruction that
does not behave exactly as the compiler writer desires
will probably never be used and, therefore, represents
a useless complication of the architecture.

In our opinion, the strongest arguments in favor of
RISCs are their shorter design time and improved
testability. Design of RISCs is faster because of the
comparative simplicity of their architecture, and their
testability is enhanced by the small size of their
microprograms. The result is not only reduced devel¬
opment costs but higher quality implementations, since
designers can more easily use the latest technology. In
addition, they can employ novel concepts in important
aspects of computer organization such as the specifica¬
tion of operating systems and programming languages.

In our experiments, we added new instructions to
the complex instruction set of the Z8001 (see box). At
the hardware level, our CPU design effort involved
implementing the ad hoc logic needed to support the
activity of the microprocessor. At the software level,
we had to write the routines emulating the special in¬
structions. These routines required 680 Z8001 instruc¬
tions (less than 2800 bytes of machine code). The
routines relevant to the execution phase of the
LOAD_CAPABILITY and STORE_CAPABILITY
instructions, for instance, consist of 28 and 20 Z8001
machine instructions, respectively, and the memory re¬
quirement for their storage is 128 and 96 bytes.
Eighty-two instructions (with a memory requirement
of 328 bytes) were needed for the ACTIVATE_
SUBJECT routine.

Therefore, in our experiments we have been suc¬
cessful in achieving a short design time and fast debug¬
ging. We were able to do this in a CISC architecture by
using a conventional microprocessor in a novel way.
Our complex instruction set is not simply the result of
adding powerful instructions to a conventional von
Neumann organization. We used special instructions
and the segmented memory scheme of the Z8001 to
implement advanced architectural features such as ca¬
pability-based addressing and tagged memory. The
salient advantages of these features have been de¬
scribed already. We are convinced they are worth the
introduction of further complexity into the architec¬
ture, even at the expense of possible CPU performance
degradation. Even this degradation may be able to be
dealt with by increasing parallelism in the operations,
which is what we did in our architecture for the in¬
telligent memory device.

Why we chose the Z8001

The segmented memory scheme of the Z8001
allowed us to utilize its standard instruction set un¬
conventionally. An address generated by the Z8001
consists of two components: a segment number and
a byte number. We brought the visibility of capability
register names up to the assembly language level by
simply mapping each of the 16 first segment num¬
bers into the name of one such register. The ability to
do this was the main reason we used the Z8001.

Of course, this feature is not essential. A linear ad¬
dress, as generated by most microprocessors, can be
easily translated into a pair {capability register name,
offset} by reserving the most significant bits of the
address for specification of the register name. In¬
deed, the only true requirement for the microproces¬
sor is that enough address lines be available. This
precludes the use of a microprocessor with a small
address space (e.g., 216 bytes).

The high-level-language architecture approach. The
arguments for and against high-level-language
machines have been discussed in depth by Ditzel and
Patterson.14 We are convinced that adequate hardware
support should be provided to critical kernel functions.
On the other hand, we wished to avoid the perfor¬
mance penalties that ensue when an instruction set
optimized for a specific high-level language is used to
implement languages for other classes of applications
(e.g., when Lisp or Cobol is implemented on a
Pascal or C machine). Therefore, we did not use a
high-level-language architecture for our computer
organization. Users are in fact aware of the trans¬
formation of their program from the source language
into machine language. This was a conscious design
choice. We did not include special instructions im¬
plementing language-specific features such as inter¬
process communication and fault treatment, for exam¬
ple, even though such features are supported by the
instruction set of a machine like the Intel iAPX 432,
which is tailored to the Ada language.15

In fact, our architecture strongly supports the im¬
plementation of high-level languages providing
modular decomposition of programs, user-defined
data abstraction, and concurrency. We do not rely on
an ad hoc software structure, but we hypothesize a
compiler taking advantage of the supports provided by
the architecture for access mode checking, memory
management, and tasking.

48 IEEE MICRO

CPU performance. The performance of the CPU
will now be analyzed in terms of capability loading
and storing, domain switching, and task switching.

Capability loading and storing. About 310 clock
cycles are required to emulate the execution phase of
the LOAD_CAPABILITY instruction. At present, the
Z8001 microprocessor operates with clock frequencies
of up to 10 MHz. Our prototype features a 6-MHz
clock; it follows that the execution time for this in¬
struction is about 52 microseconds. The STORE_
CAPABILITY instruction takes 220 clock cycles, or 37
microseconds. (The main reason for the different time
performance of the two instructions is that execution
of the LOAD_CAPABILITY instruction accesses the
segment referenced by the capability involved. This ac¬
cess is required to convert that capability into a long
capability.) Despite the very limited information trans¬
fer and data processing involved in a capability load
and store, it can be seen that the execution times for
these instructions are comparatively high. (The time
taken to execute a Z8001 integer multiply instruction
on 32-bit operands depends on the number of 1 ’s in
the multiplicand; it is 400 cycles on average. An in¬
teger divide instruction on operands of this size is car¬
ried out in about 725 cycles.)

Let us consider the routine relevant to the STORE_
CAPABILITY instruction. The contents of the capa¬
bility register involved are copied in memory by two
Z8001 instructions in 54 cycles, whereas access right,
tag, and limit checks are carried out in 166 cycles. Of
course, a microprogram implementation could easily
save most of these cycles by carrying out checks in
parallel with memory accesses. Even at the emulation
level, a mask register and a bound register (together
with proper comparison logic) would allow us to
reduce check times considerably. However, no such
registers are at present included in our prototype. We
have instead reduced the need for load and store
capabilities by providing each virtual processor with 16
capability registers. These registers greatly help an
optimizing compiler maintain a capability for a given
object in the same register for as long as that object is
likely to be referenced. This improves code perfor¬
mance in terms of both time and space.

Domain switching. Domain switches have always
been considered the critical operation in capability en¬
vironments. They have received considerable attention
not only because of their high intrinsic cost but also
because of their widespread use. Poor domain switch
times cause the programmer to design his protection
domains far larger than necessary for access control,
object encapsulation, and object sharing. This occurs,
in fact, in the Hydra operating system, in which more
than 50 milliseconds are required to switch to the
domain of the file system. This poor performance is of
course a consequence of the fact that Hydra carries

out domain switches entirely by software. On the other
hand, the Cambridge CAP computer implements pro¬
tection domain switching by microprogram, and the
time it takes to switch from one domain to another
and back again is 240 microseconds. In our architec¬
ture, the execution phase of the ACTIVATEJSUB-
JECT instruction is emulated in about 2400 cycles, or
600 microseconds with a 6-MHz clock frequency,
whereas the DEACTIVATE_SUBJECT instruction
takes about 1800 cycles, or 300 microseconds. Of
course, timing comparisons between different ma¬
chines give crude performance estimates, as they do
not take into account important architectural factors
such as word size. (The CAP is a 32-bit computer, for
example.)

We can derive a rough best-case estimate of
microprogram execution times by considering the
number of memory accesses. Let us take the AC-
TIVATE_SUBJECT instruction as an example. Exe¬
cution of this instruction copies the contents of a
whole set of capability registers, of the program
counter, and of the stack pointer onto the task stack.
A long capability referencing a code segment is also
loaded into a capability register. (Execution of the new
subject will start in this code segment.) The size of a
capability register is eight words, and a Z8001 read or
write sequence takes three clock cycles. Therefore, a
microprogram implementation of this instruction re¬
quires at least 400 cycles. An inspection of the routine
emulating the ACTIVATE_SUBJECT instruction
reveals several sources of time loss. More than 400
cycles are used for access right, tag, and limit checks.
As mentioned previously, adequate hardware support
would reduce this check time by at least one order of
magnitude. Another time-consuming activity is the in¬
validation of capability registers, an operation needed
to preserve the integrity of the objects in the domain
being abandoned. We have actually made this activity
faster by associating a flag—the VALID flag—with
each capability register. A given capability register can
be used to reference an object in memory only if its
VALID flag is set. The flag is actually asserted when a
capability is loaded into the register, and it is cleared
during execution of the ACTIVATE_SUBJECT and
DEACTIVATE_SUBJECT instructions. However, we
had to implement the capability registers by means of
random-access memory chips, and this is by far the
greatest drawback to good time performance. In fact,
with this approach, copying the contents of capability
registers to/from the main storage becomes a memory-
to-memory operation taking nine clock cycles for each
word actually transferred.

The ACTIVATEJSUBJECT and DEACTIVATE_
SUBJECT instructions involve almost the same num¬
ber of information transfers with the main memory.
Therefore, at microprogram level, these two instruc¬
tions would have about the same cost. However, the
DEACTIVATE_SUBJECT instruction involves neither

June 1987 49

Capabilitybased Microprocessor

access right checks nor capability register invalidation.
(It should be remembered that this instruction restores
the contents of all registers with quantities popped
from the task stack.) This is the reason for the much
shorter emulation time of this instruction compared to
that of the ACTIVATE_SUBJECT instruction.

Most modern high-level languages allow programs
to be decomposed into concurrent, cooperating tasks
to solve problems of large dimensions. In this ap¬
proach, programmers are encouraged to enforce privi¬
lege separation by providing a task for each protection
domain rather than by causing a single task to switch
between many different domains. If this is done, do¬
main switch times become less important than task
switch times.

Task switching. We have taken great care to
enhance efficiency in task switching. In fact, the mul¬
tiple sets of capability registers permit us to perform a
task switch by issuing a single instruction—i.e., a
RUN_VP instruction—that takes 940 clock cycles.
This is nearly half the time required by a software im¬
plementation of the same kernel function in an en¬
vironment with a single set of capability registers.
Furthermore, in such an environment, even a micro¬
program implementation of the RUN_VP instruction
would take more than 900 cycles. Indeed, the state of
a task includes the whole content of the capability reg¬
isters, the general registers, and the status registers,
and this content (150 words) must be transferred twice
at each task switch.

Of course, task switching times would be enhanced
by at least one order of magnitude in an architecture
featuring multiple on-chip sets of both capability regis¬
ters and general registers. We feel that this may well be
a suitable way to use silicon area for maximized per¬
formance.

Nine-hundred clock cycles are required to carry out
the execution phase of both the ATTACH_TASK and
the DETACFLTASK instructions. However, since 64
sets of capability registers are available in our architec¬
ture, we seldom need to issue these instructions. In
fact, after a task has been attached to a given virtual
processor, it will probably never be detached before
termination.

Pipelined execution of memory management in¬
structions. Each memory management instruction is
processed by a two-stage pipeline. Control is switched
from the running task as soon as it issues one of these
instructions. This prevents the first stage of the
pipeline (i.e., the CPU) from filling up (unless the im¬
probable situation of all the ready tasks needing a
memory management activity occurs). Furthermore,
because a task is supposed to enable a family only
when it actually needs to access an object in that
family, the pipe never needs to be emptied and perfor¬
mance degradation is avoided. As far as timing is con¬

cerned, CPU activity is not slowed down. This is
essentially a consequence of the structure of the mech¬
anism for address calculation. In particular, the family
relocation map has been implemented so that memory
cycle times are not extended. Of course, the CPU must
be forced into a wait state if a miss occurs in the map
when the contents of the map are being updated by the
computer element inside the IMD.

We must point out that the hardware support we
have provided in the IMD for low-level memory
management activities is not a salient aspect of our ar¬
chitecture but only a feature of our particular im¬
plementation of it. The memory management instruc¬
tions could well be implemented by software routines
and executed by the CPU. Of course, this would result
in a loss of parallelism in the operation.

The most important choice we made in designing
our architecture was the one to use a capability-
based addressing scheme. This decision dates

back to the earliest stages of our research. It was dic¬
tated mainly by our previous studies on the semantic
gap and, in particular, on the implementation of
abstract object types.5-6 Other aspects of our architec¬
ture benefited from the decision, too. The single-level
store, for instance, had a positive impact on garbage
collection and allowed us to take advantage of the
modularized structure of programs, even though we
introduced this approach to memory management
mainly as a solution to a serious drawback of capabil¬
ity organizations, the cost (in both processing time and
memory requirements) of mapping object identifiers
into physical addresses in the main memory. Similarly,
we saw tagged memory segments mainly as a means of
segregating capabilities from data, although this tag¬
ging scheme influenced the whole structure of the soft¬
ware; in particular, it caused a vertical migration of
object encapsulation down to the hardware level.

As far as implementing the architecture was con¬
cerned, our most important decision was to use an off-
the-shelf microprocessor for the CPU. Another basic
choice was the one to support the kernel functions of
memory management by means of ad hoc processing
power. Neither of these decisions had a major impact
on the architecture. We hope our experiment will en¬
courage the use of conventional microprocessors for
the implementation of novel architectures and ad¬
vanced machine organizations, si

Acknowledgments
The work on which this article is based was sup¬

ported in part by the Italian Ministry of Education
and in part under a research contract between Selenia,
Industrie Elettroniche Associate, SpA, Rome, Italy,
and the Consiglio Nazionale delle Ricerche (National
Council of Research), Pisa, Italy.

50 IEEE MICRO

References
1. G.J. Myers, Advances in Computer Architecture, 2nd

ed., John Wiley & Sons, New York, 1982.

2. J.H. Saltzer and M.D. Schroeder, “The Protection of
Information in Computer Systems,” Proc. IEEE, Vol.
63, No. 9, 1975, pp. 1278-1308.

3. R.S. Fabry, “Capability-Based Addressing,” Comm.
ACM, Vol. 17, No. 7, 1974, pp. 403-412.

4. Z8000 CPU Technical Manual, Zilog, Inc., Cupertino,
Calif., 1980.

5. P. Corsini, G. Frosini, and L. Lopriore, “The Im¬
plementation of Abstract Objects in a Capability Based
Addressing Architecture,” Computer J., Vol. 27, No.
2, 1984, pp. 127-134.

6. P. Corsini, G. Frosini, and L. Lopriore, “Distributing
and Revoking Access Authorizations on Abstract Ob¬
jects: A Capability Approach,” Software—Practice &
Experience, Vol. 14, No. 10, 1984, pp. 931-943.

7. H.M. Levy, Capability-Based Computer Systems,
Digital Press, Maynard, Mass., 1984.

8. E.A. Feustel, “On the Advantages of Tagged Ar¬
chitecture,” IEEE Trans. Computers, Vol. C-22, No.
7, 1973, pp. 644-656.

Lanfranco Lopriore is a researcher at the Istituto di Elabora-
zione della Informazione of the Consiglio Nazionale delle
Ricerche, Pisa, Italy. He has researched memory structures in
capability environments, capability-based tagged architec¬
tures, and cache memories. He is currently working on hard¬
ware tools for program debugging and program performance
evaluation.

Lopriore received the Dott. Ing. degree in electronic engi¬
neering in 1978 and an advanced degree in computer science

in 1980, both cum laude, from the University of Pisa.

Questions about this article can be directed to Lopriore at
the Istituto di Elaborazione della Informazione, Consiglio
Nazionale delle Ricerche, Via Santa Maria 46, 56100 Pisa,

Italy.

9. L. Lopriore, “Capability Based Tagged Architec¬
tures,” IEEE Trans. Computers, Vol. C-33, No. 9,
1984, pp. 786-803.

10. P.J. Denning, “Virtual Memory,” Computing Surveys,
Vol. 2, No. 3, 1970, pp. 153-189.

11. E.F. Gehringer, Capability Architectures and Small
Objects, UMI Research Press, 1982.

12. D.A. Patterson and D.R. Ditzel, “The Case for the
Reduced Instruction Set Computer,” Computer Ar¬
chitecture News, Vol. 8, No. 6, 1980, pp. 25-33.

13. D.W. Clark and W.D. Strecker, “Comments on ‘The
Case for the Reduced Instruction Set Computer’ by
Patterson and Ditzel,” Computer Architecture News,
Vol. 8, No. 6, 1980, pp. 34-38.

14. D.R. Ditzel and D.A. Patterson, “Retrospective on
High-Level Language Computer Architecture,” Proc.
7th Ann. Int’l Symp. Computer Architecture, Com¬
puter Society Press, Washington, D.C., 1980,
pp. 97-104.

15. E.I. Organick, A Programmer’s View of the Intel 432
System, McGraw-Hill, New York, 1983.

Paolo Corsini is a professor of digital computers with the

Engineering Faculty of the University of Pisa. His research
interests include multi-microprocessor systems and computer
architecture. He received the Dott. Ing. degree in electronic
engineering, cum laude, from the University of Pisa in 1969.

Reader Interest Survey

Indicate your interest in this article by circling the
appropriate number on the Reader Interest Card.

High 156 Medium 157 Low 158

June 1987 51

Feature

Improved Control Acquisition
Scheme for the
IEEE 896 Futurebus

D. Matthew Taub
IBM United Kingdom Laboratories Ltd.

An added preemption

facility clearly

improves earlier

schemes for imple¬

menting this hack-

plane bus used with

32-bit microprocessors.

The performance of a multi-microprocessor system depends to a
great extent on the facilities provided by the backplane bus
through which the microprocessors are interconnected. For the

new generation of 32-bit microprocessors, several buses have been
introduced or proposed. These include the Motorola VMEbus, the Texas
Instruments Nubus, the Intel Multibus II, the IEEE 960 Fastbus, and the
IEEE 896 Futurebus. There has been much discussion of their relative
merits.1"5

The most ambitious appears to be Futurebus. It is asynchronous, it re¬
quires no centralized control, it supports fault-tolerant and cache-based
architectures, and it allows modules to be added or removed while the
system is running (live insertion and withdrawal). Edwards and Peyton-
Jones discussed the importance of these facilities.6'7

The technical details of Futurebus appeared in several articles pub¬
lished in IEEE Micro in August 1984. These articles described the scheme
as it existed in Draft 6.2 of the Specification. Among them was an article
I wrote on the arbitration and control acquisition arrangements.8 At the
end I pointed out that the article did not necessarily represent the final
word and that further improvements might yet be made. This has indeed
happened, and the present article explains what these improvements are
and what advantages they give.

The main improvement is the introduction of a preemption scheme,
which ensures that modules urgently needing the bus are not kept waiting
any longer than necessary. We also corrected the calculations concerned
with the settling time of the arbitration circuits and improved the scheme
whereby a module newly live-inserted into the bus establishes syn¬
chronism with the modules already working.

Main features of the Draft 6.2 scheme
In this early scheme, modules requesting control of the bus signalled

their request over bus line AC to the module currently in control, known
as the current master or, more briefly, the master. The master module
responded at a suitable time by starting the control acquisition pro¬
cedure. This procedure consisted of a sequence of six operations.

During operation 1 modules decided whether or not they were com¬
peting for the bus on this occasion, and during operation 2 arbitration
took place using the well-known parallel scheme common to IEEE 696 and
several other buses. The purpose of operation 3 was to check for arbitra¬
tion errors, and assuming none were found, operation 4 provided the master

52 0272-1732/87/0600-0052$01.00 © 1987 IEEE IEEE MICRO

with time to finish its data transaction. In operation 5
modules carried out the various tasks needed when
control of the bus was transferred; in operation 6
modules registered the identity of the new master.

During the above procedure, the operations in the
various modules were kept in synchronism using the
three bus lines AP, AQ, and AR. The technique is
very similar to that used for the data strobe and
acknowledge signals in Trimosbus.9

Another feature of the scheme was the division of
the modules into two classes, a priority class whose
members competed for the bus whenever they needed
it, and a fairness class whose members, once having
had control of the bus, were barred from competing
for it a second time until no unfulfilled bus requests
remained. Removal of the bar took place during a
three-operation procedure, initiated as with the main
procedure, by the current master.

A deficiency of the Draft 6.2 scheme
Suppose that one or more bus requests arose while

the master was carrying out its data transactions. The
ideal time for the master to start the control acqui¬
sition procedure would be shortly before its trans¬
actions were complete, so that the end of the trans¬
actions coincided as nearly as possible with the end of
operation 3 in the control acquisition procedure. But
estimation of this time would have been difficult and
would have required extra software. What was much
more likely to happen, therefore, was that current
masters would either have delayed starting the ac¬
quisition procedure until their transactions were
finished, which would have reduced the bus through¬
put, or they would have started it as soon as a bus re¬
quest was received.

In the latter case the next master, known as the
master elect, could have been chosen early in the
current master’s tenure of the bus, resulting in its
spending a substantial part of its total tenure period
in operation 4. A problem could arise if, during that
period, a priority-class module developed an urgent
need for the bus; there was no way for it to signal its
request to the master. It would have had to wait not
only until the master had finished with the bus but
until the master-elect had finished as well. The
changes to the control acquisition scheme, described
below, overcome this problem by allowing the
priority-class module to displace the master-elect, an
arrangement known as preemption.

Unchanged features
Before describing the changes, it is worth drawing

attention to the features that remain the same. They
are:

• The arbitration method. This still works exactly
as described in the 1984 article8; that is to say, each
module is assigned its own 7-bit arbitration number.

Compete Arbitration lines

Figure 1. Arbitration logic. This is a pure logic diagram showing
the relationship between Boolean variables rather than between
electrical levels. The parity bit anO is chosen to give odd parity
over an6 to anO.

During arbitration the module applies this number
through open-collector stages to seven corresponding
bus lines, AB6 to ABO, all of them active-low. (As in
the 1984 version, the asterisks commonly used in
IEEE documents to distinguish active-low from
active-high lines have been omitted in the interests of
simplicity. The lines now designated AB were
previously designated AN. The change was made to
avoid an inconsistency in the specification.)

At the same time the module monitors the lines,
and if it is applying a 0 to a line but senses that the
line is carrying a 1 (applied by another module), then
for as long as this condition persists, it ceases apply¬
ing all its arbitration-number digits of lower
significance. The result is that when the circuit has
settled to a steady state, the AB lines carry the
highest of the arbitration numbers applied by the
competitors, and the module with this arbitration
number is the winner. A suitable logic circuit is
shown in Figure 1.

June 1987 53

IEEE 896

• The synchronization method. This method still
follows the same principles as before, but there are
differences of detail; a complete description appears
later. Also, some of the actions in the procedure have
been transferred to different-numbered operations;
for example, error checking now takes place in opera¬
tion 5 and hand-over tasks, in operation 6.

• Fairness and priority classes. These two classes,
and the rules governing the circumstances under
which their members may compete for the bus, are
unchanged.

Changes in the control acquisition
procedure

In the following explanation we say a signal is
asserted when it has the value binary 1, and released
when it has the value binary 0. As with the AB lines
all the bus lines are driven from open-collector stages

and are active-low; that is, they all carry out the
wired-OR function, binary 1 being represented by the
less-positive level. The variables that an individual
module applies to the bus lines are denoted by lower¬
case letters and the bus lines themselves, by the cor¬
responding capital letters.

Starting. Instead of being started by the current
master, the control acquisition procedure is now
started by any module requiring the bus; this includes
modules that are barred by the fairness rule from
taking part in arbitration. A module starts the pro¬
cedure by asserting bus line AP.

Synchronization method. Rather than describing
the synchronization method in terms of changes, I ex¬
plain the method “from scratch ”so it will be clearer,
particularly for readers not too familiar with the
earlier article. The objective, as before, is to keep all
the modules synchronized throughout the acquisition

54 IEEE MICRO

procedure; that is, to ensure that no module can start
operation (/+ 1) until all have finished operation /'.

Basic method. Consider a group of modules of dif¬
ferent speeds that have to carry out a sequence of
operations in synchronism as indicated above. The
operations form a loop, so that as soon as the slowest
module completes the last operation in the sequence,
all modules start the first operation over again, and
so on ad infinitum. We start at the point in the loop
where all the modules are engaged on the first opera¬
tion, operation 1, but none have yet finished it. At
this point, ap, aq, and ar in all the modules, and
therefore the signals on bus lines AP, AQ, and AR,
are 1, 0, 1 respectively, as shown in Figure 2. This
means AP and AR are asserted and AQ is released.
The way in which these signals change as the
sequence progresses is as follows:

1) As soon as each participant completes its first
operation, it releases its ar. Only when the slowest has
done so will line AR be released. In the example
shown, the slowest module is seen to be n.

2) All participants respond to the release of AR by
asserting their aq and starting their second operation.
As soon as they complete it, they release ap. The
release of AP indicates that the slowest has finished.
In this example it again happens to be n.

3) All participants respond to the release of AP by
asserting ar and starting their third operation. When
they have completed it, they release aq, and similarly,
the release of AQ indicates that the slowest has
finished (this time, module B).

4) All participants respond to the release of AQ by
asserting ap and starting their fourth operation. On
completing it, they release ar.

The process continues as above, the bus signals in
operation 4 being the same as in operation 1, those in
operation 5 being the same as in operation 2, and so
on. Therefore, if the state of the bus lines at the
beginning of the sequence is always to be the same,
which in Futurebus is a requirement, the number of
operations in the sequence has to be an integral mul¬
tiple of 3. Table 1 summarizes the bus-line states as
the sequence progresses.

A problem with wired-OR lines such as AP, AQ,
and AR, is that the release of a line by one module
while another is still holding it asserted can cause a
glitch to appear on the line. This results from the
change in the current-flow pattern. Futurebus solves
the problem by taking the relevant bus-line receiver
outputs through integrators and threshold circuits.
These are designed so that the longest possible glitch
or succession of glitches that can last for up to twice
the end-to-end propagation time of the bus will not
cause the threshold circuit to switch. The maximum
propagation time in Futurebus is 12.5 ns, and so the
integrator/threshold circuit combination must sup¬
press glitches lasting for 25 ns or less.

Table 1.
Bus-line synchronization signals.

State AP AQ AR

Op 1 in progress 1 0 1
Op 1 complete 1 0 /0
Op 2 in progress 1 1^ 0
Op 2 complete 0^ 0
Op 3 in progress 0 1" —1
Op 3 complete 0 ^0 1
Op 4 in progress l'*' 0 1

(as Op 1)

Method as applied to Futurebus. The new
Futurebus sychronization method has several features
in addition to those described above. They are as
follows:

• Sequences are of two possible lengths: a three-
operation sequence for cancelling the arbitration bar
in fairness modules and a six-operation sequence for
normal arbitration and transfer of control. The de¬
cision as to which length of sequence is required is
made shortly after the sequence starts (operation 2)
and is stored internally in all participating modules.

• Strictly speaking, the number of separate opera¬
tions needed in the longer sequence is only four. But
this sequence is extended to the required figure of six
by allowing the settling of the arbitration circuits to
spread over operations 2, 3, and 4. This gives faster
overall performance than does the alternative of
introducing dummy operations (no-ops).

• A pause is introduced during operation 1 to wait
for one or another of the potential masters to request
control of the bus. This occurs as follows. When
modules detect AQ switching to 0 and indicating that
the last operation in the preceding sequence is fin¬
ished, they do not automatically assert ap. The
module or modules requiring the bus assert ap first,
and the remainder follow suit only when they detect
that AP is asserted. Until this happens, no module is
permitted to signal the end of operation 1, that is, by
releasing ar.

• A pause is introduced during operation 5 mainly
to wait for the current master to finish its bus trans¬
actions. This occurs in similar fashion to the above.
When AR switches to 0 indicating that all modules
have completed operation 4, modules do not auto¬
matically assert aq. The first one to do so is either:

1) a requester, if there is no current master; (The
absence of a current master will have been detected in
operation 1 by all the AB lines being released; see

June 1987 55

IEEE 896

START of SEQUENCE

- initial assertion of AP by any bus requestor (including fairness-barred),

or by recompeting master (see Table 2)

R.

r
- op 1 wait - -op 1 completion H

Status Operation

FB.BB.
CP.BR.OB

Register identify of mastf r if needed

FB If making a bus request
switch status to CP

BB If making a bus request
switch status to BR

CP.RM Assert ac ;
store u (Note 1)

FB.BB
BR.CM

Release ac

CM If recompeting switch

status to RM

-op 2 - -►M op 3 ► op4^^4-

Status Operation
I_1

All Register that this
is a 6-op. sequence ' 1

i i

CP.RM Apply arb. no to AB lines

CM Remove arb. no from AB lines

CP.CM.RM Time an interval t#

Status Operation 1

All Register that this is

1
j No-op

a 3-op. sequence
i

BR Switch status to CP i

BB Switch status to FB
i
i

Figure 3. Control acquisition sequence. The two-letter status designations are defined in Table 2.

Note 1 in Figure 3.);
2) any potential master detecting an error in the

arbitration that has just taken place;
3) a priority-class module seeking to displace the

master-elect (preemption); or
4) the current master, when it has finished its bus

transactions. The remaining modules do not assert
their aq until they detect AQ asserted, and only after
this has happened are they permitted to release ap
indicating that they have finished operation 5.

Operations 1 and 5 may therefore be thought of as
being divided into two periods: a wait period that
lasts until the appropriate variable, ap or aq respec¬
tively, is asserted, and a completion period that lasts
from then until the required operation is over. Note
that the wait period can be arbitrarily short; for in¬
stance, a bus request can be presented immediately
after the preceding sequence finishes, possibly by a
fairness module whose bar to arbitration has just
been cancelled; a module that lost in the preceding
arbitration; or a module that caused preemption to
take place. In operation 5 the wait period can be ar¬
bitrarily short if there is no master.

Table 2. Module status.

Designation Meaning

FB Free
bystander

BB Barred
bystander

CP Competitor

Definition

A module not at the
time barred under the
fairness rule and not re¬
questing control of the
bus

A module barred by the
fairness rule from taking
part in arbitration and
not requesting control of
the bus

A module requesting
control of the bus and
free to take part in
arbitration

IEEE MICRO 56

initial assertion of AQ by the master when its bos transactions are finished,
by the master-elect if u = 0 (see Note 1). by a pre-emptor. by a recompetmg
master (see Table 2), or by any module detecting an arbitration error

J”
"*u is the OR-function of
the digits on the AB lines;
u = 0 indicates that there
is no master.

2A module may preempt
only if it is a priority-class
requestor whose
arbitration number is
greater than AB, or to
broadcast an emergency
message.

3When a module changes
status during operations
5 or 6, its other actions
are determined only by its
initial status.

Table 2 (cont’d.)

Desig¬
nation Meaning Definition

BR Barred
requestor

A module requesting
control of the bus but
barred by the fairness
rule from taking part in
arbitration

CM Current
master

The module currently in
control of the bus

ME Master-
elect

The competitor that has
won the immediately
preceding arbitration but
has not yet become
master

OB Observer A module that never
requires control of the
bus but takes part in the
control acquisition pro-

Desig¬
nation Meaning Definition

cedure to synchronize
certain tasks with other
modules1

RM Recompeting A status assumed by the
master master to initiate a

dummy control acquisi¬
tion procedure2 * * * * *

1 The tasks that an observer may have to carry out in¬
clude: (a) registering the identity of the current master,
(b) unlocking other interfaces on completion of the
master’s bus transactions, and (c) receiving emergency
messages.

2 The master can initiate a dummy control acquisition
procedure if it finishes its data transactions before any
other module requests control of the bus. The purpose is
to prevent other interfaces in the slaves from remaining
locked for any longer than necessary (p. 368). Alter¬
natively, the master can unlock its slaves using the data-
transfer portion of the bus.

June 1987 57

IEEE 896

The new procedure
The flow diagram in Figure 3 presents details of

the new control acquisition procedure; Table 2 gives
the meaning of the various two-letter status designa¬
tions. The main features of the procedure are de¬
scribed here.

Operation 1. Modules register the identity of the
current master, that is, the number on the AB lines.
Any module or modules requiring control of the bus
assert ap to start the procedure, and if not barred
under the fairness rule, assert ac.

Operations 2, 3, and 4. Competing modules engage
in arbitration and time an interval ta to allow the ar¬
bitration circuits to settle. The value of ta is discussed

later.

Operation 5. All potential masters check for ar¬
bitration errors. Modules finding an error or carrying
out preemption assert ac to prevent bus mastership
from being transferred and assert aq to restart the se¬
quence. Otherwise, modules wait until the sequence is
restarted by the current master after it has finished
using the bus. Note that a module may preempt
another only if it is in the priority class and if its ar¬
bitration number is higher than that of the master-
elect, that is, higher than the number on the AB lines.

Operation 6. If AC = 0, indicating that control of
the bus is to be transferred, the master-elect becomes
the new master, and all modules cancel any locking
operations imposed during the previous bus tenure. If
AC = 1, the current master remains in control, and
all the conditions that existed before the sequence
started are reestablished.

Emergency messages
The preemption feature in the new scheme pro¬

vides a powerful method of broadcasting emergency
messages such as warning of an imminent power
failure. One pays a price for this facility in that each
possible emergency message reduces by one the num¬
ber of priority-class modules that can be accom¬
modated. But in practice this is unlikely to be a
serious limitation. The method is as follows.

Suppose that a total of four different emergency
messages is required. The four contiguous numbers at
the top of the priority-class range of arbitration num¬
bers represent these messages. The highest number,
that is, 1111111, represents the most urgent message,
and the lowest number, 1111001, represents the least
urgent. (Note that the least significant bit is a parity
bit giving odd parity overall).

If the system is in operation 5 waiting for the cur¬
rent master to finish its transactions, and one of the
modules needs to send an emergency message, it

causes preemption to take place as described above.
As a result, the system reaches operation 1 with the
current master still in control. The module sending
the message then immediately starts a new procedure
in which it enters arbitration using the appropriate
emergency-message number instead of its normal
arbitration number. Provided no other module is
sending a message of higher urgency, the number ap¬
pearing on the AB lines during the following opera¬
tion 5 will be the number representing the message.
All modules taking part are required to act on it. The
module sending the message then causes preemption
to take place a second time, returning the system to
operation 1 with the current master still in control.

Correction to the expression for ta

The length of time that the arbitration circuits take
to settle depends on two types of delays. One is the
propagation delay along the bus; a second type con¬
cerns delays through the logic circuits, bus-line trans¬
ceivers, and antiglitch integrators in the competing
modules and current master. An expression for the
settling time under worst-case conditions t& was
derived in the 1984 article. For the general case of n
arbitration lines, it is:

ta<= Atn+ M ax (ts + td)

n-2

E M« te,k
k=0

+ Max tf
C J

0)

where tp = maximum end-to-end propagation delay
along the bus;

ts = delay introduced by the integrator following
the AR bus-line receiver;

td = delay between the release of AR at a module’s
terminal and the most significant digit of its arbitra¬
tion number being applied to AB6, less the delay intro¬
duced by the AR integrator;

te k = delay between an externally produced
change on a module’s AB(k+ 1) bus-line terminal and
the resulting change on its AB(£) terminal, for exam¬
ple, in Figure 1 the sum of the delays through
elements A, B, C, D, and E;

tf = delay between an externally produced change
on a module’s ABO terminal and the resulting change
in its win/lose signal y in Figure 1, that is, the sum of
the delays through elements F, G, and H; and

Max/c stands for the maximum value over the
competitors and current master.

In fact Equation 1 cannot be used directly as a
basis for modules to time the arbitration process
(operations 2 through 4) because no module has in¬
formation on the circuit delays in the others. Instead
all the competitors and the current master introduce a
delay ta that depends only on its own circuit delays

58 IEEE MICRO

and on values that are specified for the whole system.
(This interval was previously designated t2 because
the dela>\was introduced during operation 2. It now
extends through operations 2, 3, and 4, and so the
old designation is no longer appropriate.) ta thus
varies from module to module. The expression for it
has to be such that the highest value among the com¬
petitors and current master is never less than tas as
given by Equation 1. This guarantees that operation 5
cannot start until the settling process is complete.

ta can be considered as the sum of three compo¬
nents, taU ta2, and tai. tai depends on the bus-
propagation delay, ta2 on logic-circuit and bus-line
transceiver delays, and taJ on the integrator delay. In
1984 it was proved that suitable expressions for tal
and ta2 are:

ta2 = (n + UMax ytd,tek(0<k<n-2), tf^ (3)

where Max stands for the largest component among
td, all the tek and {/-within the module in question.

However, the 1984 version needs to be corrected
concerning ta3. It gave ta3 the value tsmax, that is, the
maximum delay that the integrator/threshold circuit
in any module is allowed to introduce. In fact this is
longer than necessary; the original reason for the
term tsmax and the correct term follows.

Original reasoning. Under the conditions present in
Futurebus, the maximum duration of a glitch or
glitches that a module can experience on any bus line
preceding its genuine release is 2tp. A simple case in

which a glitch of this duration occurs is when there
are two modules at opposite ends of the bus, both
holding a line asserted, and one releases it; the
module that released it will experience a 2tp glitch.
The integrator/threshold-circuit combination in¬
cluded in every AP, AQ, and AR bus-line receiver
rejects all pulses up to and including this value.

We are concerned with the delay t' that the in¬
tegrator can introduce between the genuine release of
a line and the module perceiving that release, that is,
the interval until its threshold circuit switches.

Suppose that a glitch has brought the integrator
output in a module to just below the threshold level,
and that shortly afterwards, before the integrator has
had time to reset appreciably, a genuine release of the
bus line takes place. Then t' in that module will be
negligibly small, whereas in another module not ex¬
periencing any glitch, t' may be as high as tsmax.

The features of the worst case conditions relevant
to the present argument are shown in Figure 4 (de¬
rived from the 1984 Figure 2 on p. 33s). The master is
situated at one end of the bus, and PM4 at the op¬
posite end is one of the potential masters about to
take part in arbitration. (The “4” in its designation is
used simply to maintain consistency with the 1984
version.)

In the 1984 reasoning, PM4, the ultimate winner of
the arbitration, was assumed to be the last module to
complete operation 1, and so line AR at the master
would not be released until tp later. It was argued that
in PM4 t' could be zero, while in the master it could
be tsmax. And so, to allow for the latter’s late start of
arbitration, PM4 and therefore modules in general
would have to make ta3 equal to ts max.

In fact this argument is false. If PM4 is the last

Figure 4. Waveforms and lattice diagram showing conditions wrongly assumed in the earlier calculation of ta.

June 1987 59

IEEE 896

Master finishes Master starts
operation 1 operation 2

Figure 5. Waveforms and lattice diagram showing corrected conditions for worst effect of integrator delay.

module to finish operation 1, it cannot have ex¬
perienced any glitches, and so its value of t' must be
at least ts min.

Conditions for the longest arbitration settling time.
The arbitration settling time experienced by PM4 will
be longest when PM4 starts the arbitration operation
as early as possible and the master as late as possible.
Figure 5 shows the circumstances under which this
occurs; it deliberately ignores bus-line receiver delays
because these have already been accounted for as part
of ta2.

The integrator delays in PM4 and the master are
respectively ts min and ts max. The last module to finish
operation 1 is the master, and it does so exactly tp
later than PM4. Figure 5 shows that PM4 starts
operation 2 at a time tsmin after it completes opera¬
tion 1, whereas the corresponding figure for the
master is ts max. The argument given earlier showed
that if PM4 had not experienced this ts min delay, the
appropriate value of tai would have been tsmax. But
since PM4 is itself delayed by tsmin, the correct value
is:

- tsmax~tsmin (4)

Thus, adding Equations 2, 3, and 4, the correct
expression for ta becomes:

= max~~ *s min

+ (n + l)Max \td,tek(0 < k<n-2),tf~\ <5)

Synchronizing a new module
A Futurebus system has to accept modules being

plugged in while the system is “live.” To avoid dis¬
ruption of the bus signals, the module being plugged
in, or the newcomer as it is called, must have all its
bus-line variables released. Before it can start work¬
ing normally, the newcomer has to synchronize ap,
aq, and ar with the modules that are already work¬
ing. The 1984 version (p. 40) showed how this could
be done, but the method was not fully worked out; it
contained several technology dependencies, only one
of which was stated explicitly.

Since the 1984 version and Draft 6.2 of the
Specification were written, a better scheme has been
developed in which the technology dependence is kept
to a minimum and is better understood. In fact if two
spare bus lines were available, the technology
dependence could be avoided altogether. One of the
lines would serve as a request for synchronization
line, which the newcomer would assert after being
plugged in. The second line, a synchronize line,
would be asserted by the current master when it was
safe for the newcomer to do so. This would occur
during operation 6 of a control acquisition cycle in
which the master was relinquishing control of the
bus. By asserting this line the master would in effect
be telling the newcomer: “The bus is now idle, and I
am holding up the acquisition procedure (by not
releasing aq) until you have asserted ar and ai.” (ai is
the inverse address acknowledge signal used in the
data-transfer portion of the bus.10) When the new¬
comer had done so, it would indicate the fact by
releasing the request for synchronization line, and the
master would respond by releasing the synchronize

60 IEEE MICRO

From AQ
bus-line
receiver

(a)

To remaining
logic

(b)

Delay caused
-►I by integrator

resetting

Figure 6. Method of bypassing integrator resetting delay: circuit (a) and waveforms assuming active-high logic (b).

line, after which it would complete operation 6.

Procedure. It would be very attractive to incor¬
porate this scheme into a future version of the speci¬
fication, but for the time being it is ruled out by a
shortage of bus lines. In its place we have used the
following procedure, which unfortunately is more
complicated and has a small technology dependence.

1) After being plugged in, the newcomer detects the
state (AP, AQ, AR) = (0, 0, 1), which indicates
either the operation-1-wait state or the operation 3/4
boundary.

2) On the next occasion that it detects AQ asserted,
indicating the start of operation 2 or 5, the newcomer
asserts its own aq. It needs to have done this within a
prescribed time, discussed later, to prevent the rest of
the system from proceeding beyond the end of the
following operation 3 or 6 as the case may be.

3) After asserting aq, the newcomer waits until it
detects the release of AP, which indicates that opera¬
tion 3/6 has started; it then asserts ar and tests AC.
If AC = 0, the operation will be either operation 3
of a fairness-release cycle or an operation 6 in which
control of the bus is successfully handed over to a
new master. In both cases the next operation is cer¬
tain to be operation 1.

Therefore if the newcomer finds AC = 0, it joins
in the normal control acquisition procedure from the
immediately following operation. If on the other
hand it finds AC = 1, the following operation could
be operation 4 or 1. In this case the newcomer oper¬
ates the ap, aq, ar protocol but without carrying out
any of the normal control acquisition operations. Its
only action is to test AC every time (AP, AQ, AR) =

(0, 1, 1), that is, in every operation 3 and 6, until it
finds AC = 0. When AC = 0, the newcomer joins in
the normal control acquisition procedure from the
operation 1 immediately following.

At this point the newcomer is not yet ready to take
part in data-transfer activity because its ai is still at 0.
It asserts ai during the next operation 6 in which
mastership is being successfully transferred, that is,
an operation 6 in which AC = 0, because as explained
above, at that time the data-transfer lines are sure to
be idle.

Timing constraints. A study of worst case condi¬
tions shows that the maximum time that can be
allowed between line AQ at the newcomer switching
to 1 and the newcomer’s aq being fully switched to 1,
that is, including the delays through the newcomer’s
receiver, some logic, and its transmitter, is:

(minimum duration of operation 2
or operation 5) + 2tp

Minimum duration here means the minimum interval
between a module detecting bus line AQ asserted and
its releasing ap.

With the bus transceivers presently available, for
example, National Semiconductor’s DS3896 and
DS3897, the sum of the delays through the receiver
and transmitter is greater than 2tp, which requires the
minimum duration of operations 2 and 5 to be
greater than zero. The specified value is likely to be
about 30 ns, which will allow a maximum total delay
through the newcomer’s AQ receiver, transmitter, and
the intervening logic of 55 ns. There is no need to in¬
clude the integrator resetting time in this figure if one
uses the circuit shown in Figure 6.

June 1987 61

IEEE 896

This article draws attention to those cir¬
cumstances wherein the performance of the
earlier control acquisition scheme for the

IEEE 896 Futurebus could be suboptimum. A modi¬
fied scheme overcomes the drawback by including the
facility for preemption. The advantages that the new
plan gives are:

1) a guarantee that, at the end of a module’s bus
tenure, control of the bus passes to the highest pri¬
ority module needing it at the time; and

2) emergency-message broadcasting, independently
of the normal data-transfer facilities.

A small downward correction has been made in the
length of the time interval that modules must allow
for the arbitration circuits to settle. Lastly, an
improved procedure has been described whereby
modules newly plugged into a live system synchronize
their operation with the modules already working, ste

Acknowledgments
The strong advocacy by Keith Britton (Blast-

masters Inc.) resulted in the modification of the
earlier scheme to include preemption. John Theus
(Tektronix Inc.) implemented many features of the
new scheme, including preemption. Hugh Field-
Richards at the Royal Signals and Radar Establish¬
ment,11 Simon Peyton-Jones at University College,
London, Peter Ashenden at the University of Ade¬
laide, and others elsewhere further implemented the
new scheme. John Hill (Admiralty Research Estab¬
lishment) carried out simulation work on the live-
insertion arrangements, and the correction to the
value of ta resulted from discussions I had with
Michael Rothon (British Telecom).

I should like to record my thanks to all the people
mentioned above, to all the other members of the
P896 Working Group, and to the director of IBM
United Kingdom Laboratories Ltd. for permission to
publish this article.

References
1. H. Kirrmann, “Report on the Paris Multibus II

Meeting,” IEEE Micro, Aug. 1985, pp. 82-89.

2. P.L. Borrill, “The 32-bit Bus Standards Issue
Revisited,” IEEE Micro, Oct. 1985, pp. 76-84.

3. P.L. Borrill, “A Comparison of 32-bit Buses,” IEEE
Micro, Dec. 1985, pp. 71-79.

4. P.L. Borrill, “Objective Comparison of 32-bit
Buses,” Microprocessors and Microsystems, Mar.
1986, pp. 94-100. (This is an updated version of
Ref. 3).

5. D. del Corso, H. Kirrmann, and J. D. Nicoud,
“Microcomputer Buses and Links,” Academic Press,
New York, 1986.

6. R. Edwards, “Futurebus—the Independent Standard
for 32-bit Systems,” Microprocessors and Microsys¬
tems, Mar. 1986, pp. 65-68.

7. S. Peyton-Jones, “Using Futurebus in a Fifth-
generation Computer,” Microprocessors and
Microsystems, Mar. 1986, pp. 69-76.

8. D.M. Taub, “Arbitration and Control Acquisition in
the Proposed IEEE 896 Futurebus,” IEEE Micro,
1984, pp. 28-41.

9. I.E. Sutherland et al., “The Trimosbus,” Proc.
Caltech Conference on VLSI, Jan. 1979,
pp. 395-427.

10. P. Borrill and J. Theus, “An Advanced Communica¬
tion Protocol for the Proposed IEEE 896 Future-
bus,” IEEE Micro, 1984, pp. 42-56.

11. H.S. Field-Richards, “A Control-acquisition Inter¬
face for Futurebus,” RSRE memo. 3935, Royal
Signals and Radar Establishment, Malvern WR14
3PS, UK, July 1986.

D. Matthew Taub holds the corporate position of senior
technical staff member at IBM United Kingdom Laborato¬
ries Ltd. Since 1957 he has worked on magnetic core logic
circuits, computer architecture, read-only and magnetic disk
storage, peripheral device control using LSI techniques,
CRT displays, and design of microcomputer bus systems.
He has also worked for Ericsson Telephones Ltd. (now part
of the Plessey Group) and Leo Computers Ltd. (now part
of ICL).

Taub received the BSc in electrical engineering from
University College, Nottingham, and the MSc and PhD
from Cambridge University in 1945, 1950, and 1982. He has
published 23 articles in journals and 29 articles in the IBM
Technical Disclosure Bulletin and is named as inventor or
coinventor on 28 patents. He is a fellow of the IEE and the
British Computer Society and a senior member of the
IEEE. From 1977 to 1981, he served as joint honorary
editor of IEE Proceedings on Computers and Digital
Techniques.

Questions concerning this article can be directed to the
author at IBM United Kingdom Laboratories Ltd., Mail
Point 151, Hursley Park, Winchester, S021 2JN England.

Reader Interest Survey

Indicate your interest in this article by circling the
appropriate number on the Reader Interest Card.

High 162 Medium 163 Low 164

62 IEEE MICRO

Feature

A Synthetic
Instruction Mix for

Evaluating
Microprocessor

Performance
John C. McCallum and Tat-Seng Chua

National University of Singapore

Estimating the performance of a microprocessor in its design and early
production phases can be a relatively easy process as well as a useful
one. A manufacturer’s documentation, often available to the public

before a microcomputer itself is introduced, provides data that can be used in
evaluating and comparing the CPU’s raw speed.

Here we present a synthetic instruction mix developed for evaluating the per¬
formance of microprocessors in scientific, commercial, systems, and general
applications. The synthetic instruction mix consists of a set of Move, Add, and
Multiply pseudoinstructions based on studies of dynamic statement executions
of high-level languages, or HLL. We have translated the pseudoinstructions
used in the synthetic instruction mix for several microprocessors to determine
the performance in executing the pseudoinstructions for the different types of
applications.

Several techniques are known and used for evaluating the performance of
computers. Lucas has surveyed the popular evaluation techniques: cycle and
add times, instruction mixes, kernel programs, analytic models, synthetic pro¬
grams, simulation, and performance monitoring.1

The major instruction mix formulations were developed by Arbuckle,
Knight, and Gibson.2-4 These early instruction mixes were developed before
statistical studies of computer instructions and high-level languages were made
by Knuth and others.5

Increased interest in determining a mix of instructions that matches HLL use
occurred with the arrival of RISC architectures.6’7 We do not want to com-

Need to rate the
performance of
that new micro¬
processor you’re
interested in?
Here’s a simple,
easy way to do
just that.

June 1987 0272-1732/87/0600-0063$01.00 © 1987 IEEE

7?

"2
?

Evaluating Microprocessors

ment on the RISC-versus-CISC controversy.8 But,
our synthetic instruction mix may be able to give
measures for comparing the performance of such
processors. The examples we give here apply to
popular microcomputers.

Any comparative evaluation of different computers
can only be definitive in terms of specific programs
run under specific conditions. Bell et al. produced a
chart comparing several benchmark programs run on
a VAX 11/780 and a DECsystem 2060.9 The chart
showed the VAX to be three times slower on one
benchmark and 50 percent faster on another. The
dependence on unsuitable choices of benchmarks
could lead to a factor-of-six difference in expected
performance levels. Even within the same computer
architecture, different benchmarks can give signifi¬
cantly different results. McCallum’s simple test per¬
formed on the VAX 8600 and VAX 785 showed a 35-
percent difference between performance ratings ob¬
tained from the Whetstone and the Sieve benchmarks.10

Instruction mixes and benchmarks
The major difference between instruction mixes

and benchmark programs for evaluating performance
is that the instruction mix looks only at the CPU pro¬
cessor. The benchmark program tests the combina¬
tion of the language processor and the CPU pro¬
cessor. The language processor causes a larger varia¬
tion in performance in more cases (see Gilbreath and
Gilbreath11) than does the CPU performance.

An instruction mix evaluation avoids the language
processor problem because its instructions are com¬
piled by hand. A synthetic mix uses pseudoinstruc¬
tions that can be translated to specific machine lan¬
guage equivalents for different processors.

No method is truly accurate in determining pro¬
cessor performance. However, it is always useful to
know the approximate performance of a processor
for discussion and comparison purposes. This pro¬
cessor performance measure P is normally derived by
running a standard benchmark such as the Whet¬
stone, 12 the Dhrystone,13 or a more-specialized
benchmark suite such as the Unix benchmarks.14
Despite attempts to claim these benchmark perfor¬
mances as accurate performance ratings, they can
provide only a guideline, due to the inclusion of the
effect of the language processor.

The Whetstone benchmark derived by Curnow and
Wichmann is based on static and dynamic counts of
instructions used in the Whetstone Algol system
described by Randel and Russell.12,15,16 The statistics
were collected from a total of 949 Algol programs,
which were run on the Whetstone system and cate¬
gorized by counting the number of the Whetstone
Algol interpretation instructions. The benchmark was
derived from matching a synthetic program to this in¬

struction mix. The Whetstone benchmark, 'as in any
high-level benchmark program, is designed to mea¬
sure the combined hardware and language processor
performance. One significant result of Curnow and
Wichmann’s work was the measurement of a 7:1
ratio between versions of language processors run¬
ning on one specific computer (an IBM 360/65).
Although the combined language/CPU performance
is useful in most evaluation exercises, sometimes only
the basic CPU speed is desired—such as when design¬
ing a new processor.

The Whetstone benchmark contains three known
defects. It lacks a standard mix of operator and
operand precisions (word size); its internal loops can
be optimized to nothing with good global optimiza¬
tion in the language processor; and its predominance
of floating-point operations is too strong.

The difficulty with any benchmark program is that
it requires having the processor available to you in
the configuration you wish to compare. One often
wants to determine the performance of the processor
before the processor is actually available. Fortunate¬
ly, microcomputers in particular often have documen¬
tation available before they become accessible to the
public. With this data we can create a synthetic in¬
struction mix for determining the performance of
microcomputers.

The process of creating a synthetic instruction mix
is similar to the problem of creating a synthetic
benchmark program. One must determine the func¬
tion for which the processor will be used to determine
what type of instructions will be necessary. Then the
frequency of the actual machine instructions must be
estimated. The time for executing those instructions
in the processor must be determined, given some con¬
straints about the processor’s environment. Finally,
this process must be repeated for several processors
so that the relative performance P is meaningful to
people studying the evaluation.

The first stage in developing a synthetic instruction
mix is the same as in the case of the synthetic bench¬
mark—to gather statistics on the use of processors.
Weicker surveyed data available in the literature for
determining an HLL benchmark, Dhrystone (given in
Ada and translatable into C and Pascal).13 The
Dhrystone, designed for systems programming, does
not include floating-point operations, while the
Whetstone is oriented heavily toward such opera¬
tions. We have surveyed the statistical data on high-
level languages for scientific, commercial, and sys¬
tems applications.

The second stage in developing the synthetic in¬
struction mix is to translate the HLL instructions into
corresponding machine language instructions. Com¬
pilers translate in the case of synthetic benchmarks.
We chose to use a pseudoinstruction form for this
“compilation.” We derived a set of five pseudo¬
instructions that must be determined for each pro-

64 IEEE MICRO

cessor. The five instructions have a variety of data-
word lengths to give a total of 12 instructions to
estimate for each processor. (Even a small number of
instructions can represent the majority of instructions
used in a program.17 We have estimated the weights
of these pseudoinstructions for systems program¬
ming, commercial programming, scientific program¬
ming, and general programming environments. We
feel that the general programming environment is the
best indicator of performance, in that it will not vary
too greatly between one application and another.

The last stage in the benchmark process is to derive
the estimated execution time of this mix on specific
processors. This stage requires that the pseudo¬
instructions be translated into actual machine code
instructions. We have assumed these pseudo¬
instructions would have memory-to-memory opera¬
tions, which means that each pseudoinstruction will
likely translate into several microprocessor instruc¬
tions. Since this is a hand-translation process, we
have tried to keep it simple. If the translation were
too difficult, few people would be interested in deter¬
mining performance. For this reason we have kept
the number of pseudoinstructions small. The timings
of each of these actual machine instructions have to
be determined, or estimated where appropriate. In
newer microprocessors (such as the Motorola 68020
with instruction caches and pipelined architectures),
we must estimate some effective average execution
times. When the total times for the execution of the
pseudoinstructions have been determined, the times
can be put into the instruction mix formula. This
gives a performance rating in pMIPS (millions of
pseudoinstructions executed per second). This pMIPS
rating is about half of the MIPS ratings generally at¬
tributed to large computers.18-19

Determining the high-level
statement mix

Static and dynamic analyses of programs have
been performed for many different languages and
types of applications. Knuth performed the first
major study on language analysis with Fortran.5
Similar types of studies have been performed for
Algol,15’20 XPL,21 PL/1,22 SAL,23 Cobol,24’25
Pascal,26-29 APL,30 HLL Symbol computer,31 and
Ada.32-33 Additional work on Fortran has been done
by Lurie and Vandoni,34 Robinson and Torsun,35
and Partridge and James.36 Weicker presents a fairly
comprehensive summary of HLL instruction statistics
on the Dhrystone benchmark.13

Some studies of actual machine instructions have
been made for a variety of processors. Some of the
processors studied were the Maniac and the
CDC3600,17 the IBM S/360,21 the MOS6502,37 the
VAX,38 and the Motorola MC68000.39 Fairclough
made static instruction counts on four microproces¬
sors: the TMS9900, the MOS6502, the MC6800, and
the MC68000.7 These studies mainly look at the in¬
dividual instruction frequencies rather than at the
purpose of the instructions. It is therefore difficult to
compare instruction frequencies across the proces¬
sors. Fairclough grouped the instructions into cate¬
gories that do not correspond directly (but which are
easily adjustable) to the HLL statements.

Table 1 summarizes the statement and instruction
frequencies found in several empirical studies men¬
tioned above. The majority of these measures are
from static frequency counts of high-level languages.
However, some machine-level instructions have been
counted, and some dynamic instruction counts have
been made. These values can be used to calculate

Table 1.
Percentage of statement types in high-level languages.

Form: Dynamic Dynamic Dynamic Static Static Static Static
Language: Fortran5 Cobol25 Assembly39 Fortran5 Fortran5 Fortran35 PL/121

Statement
Assign
Add

67
20 16

51 41 38 41

Move 27 33
If 11 33 11 10 15 9 18
Goto 9 11 16 9 13 9 12
Do 3 8 9 4 6 7
Cal!
Perform

3
6

6 5 8 3 2

Total % 93 97 90 84 81 65 80

No. lines 15,000 21,745 2,000 15,000 250,000 29,971 145,994
est* est est

June 1987 65

Evaluating Microprocessors

Table 1.
Percentage of statement types in high-level languages, (cont’d.)

Form:
Language:

Static
Cobol24

Static
Cobol25

Static
Assembly7

Static
Pascal29

Static
Pascal40

Static
Pascal27

Static
Pascal28

Statement
Assign 42 49 34 44

Add 7 8 14

Move 38 34 45
If 15 18 10 14 9 18 14.8

Goto 14 17 14 0.5 0.3 0.3 0.3

Do 6 8.1 11 7 8.2

Call 9 34.3 9 40 17.5

Perform 11 13

Total % 85 90 98 98.9 78.3 99.3 84.8

No. lines 226,466 21,745 50,000 11,393 2,000 24,512 59,018
est est

♦Where the number of lines of code was unknown, we have estimated.

several HLL statement mixes. We have used the five
types of high-level statements in our mix: Assign¬
ment, If, Goto, Do, and Call. See Table 2 for a list
of the calculated statement mixes. We based our
choice of limiting the statement types on Knuth’s
Fortran data in which 75 percent were all Fortran
statements and another 20 percent were nonexe¬
cutable statements.5 We omitted only input/output
statements from the major instructions. I/O instruc¬
tions were thought to be too variable among
machines to determine actual machine translations.
This choice of statement types led to a problem in
some languages such as Cobol and assembly in which
the Move and Compute categories of instructions
would correspond to assignment and similar
equivalence problems. We tried to translate these
reasonably.

Table 2.
Normalized statement frequencies
(in percentages) for a general mix.

Statement Static Dynamic

Assignment 52 58
If 18 24
Goto 13 11
Call 10 4
Do 7 3

Total % 100 100

We calculated the percentages of dynamic state¬
ment frequency separately from the static statement
percentages. The quoted statement types and fre¬
quencies in Table 1 have been adjusted to fit into our
categories. The total statement frequencies do not
equal 100 percent for different reasons: nonexe¬
cutable statements and the limited statement set we
have chosen. As a result we adjusted the statement
frequencies to give totals of 100 percent.

We then weighted the normalized statement fre¬
quencies by the sample size of the studies and made
total counts of the weighted instructions. Finally, we
adjusted the Add, Move, and Perform statements to
fit into the Assign, Do, and Call categories.

Table 2 summarizes the percentage of statement
types found in static and dynamic execution counts.
The static statistics are calculated from a sample size

of about 850,000 lines of code. The dynamic results
are generated by about 40,000 lines of code.

Determining operations in language
statements

We have estimated the major statement frequencies
for Assignment, If, Goto, Do, and Call statements.
These statements must now be studied to determine
the pseudoinstructions that they each generate. The
generated instructions depend on the type of opera¬
tors and operands being used in the statements.
Weicker’s survey includes operand types for some
high-level languages. It is difficult to translate the
HLL operands directly to low-level operand types.
However, we have tried to estimate this split from the
gathered statistics.

66 IEEE MICRO

We estimated how many 64-bit, 32-bit, 16-bit, and
8-bit operands exist so we could determine typical
Move operations.13 (We included 104-bit, or 13-byte,
operands due to the average Cobol Move operand
found by Torsun and Al-Jarrah.25) The split of
operands among integer, real and double-precision,
and complex values indicates the complexity of the
floating-point operations that might have to be per¬
formed. The major study of operand types is an un¬
published 1980 study by Patterson and quoted by
Weicker.13

Lurie and Vandoni studied scientific Fortran iden¬
tifier names based on 92,463 lines of code in CERN’s
program library.34 In Fortran, the implicit name con¬
vention for integers is almost always followed by pro¬
grammers. Lurie and Vandoni found that approxi¬
mately 40 percent of the occurring identifiers start
with the letters I to N. These identifiers did not in¬
clude the Fortran keywords and function names,
which they counted separately. The relative occur¬
rences of the double-precision function names and
single-precision function names of sin, abs, and cos
(6.7 percent, 4.5 percent, and 7.2 percent) give an
estimate of double precision to real usage. The exp
and abs functions give a similar value for the com¬
plex to real usage (5.2 percent and 7.1 percent). This
results in the split of real (53 percent), integer (40 per¬
cent), double (3.5 percent), and complex (3.5 percent)
for heavy scientific computing from a static Fortran
program analysis. We have included the complex type
into the double-precision category to simplify the
analysis.

The percentages of operand types used in systems
programs are not so easy to estimate. The reason for
this difficulty is the heavy use of string or character
variables. Even assembly language in CISC machines
such as the VAX can give problems in evaluation due
to the multibyte Move operations. It appears we have
no choice other than to crudely estimate a split
among the operand types, taking into account Weick-
er’s quotations and looking at VAX opcode distribu¬
tions.38 Table 3 lists the distribution of elementary
operand types we have used.

Having determined estimates for the mix of high-
level statements and the percentages of operands used
in the statements, we must determine the mix of
operators. We used only the Assignment statement or
its equivalent to determine the operator frequencies.

Determining operator frequencies
The translation of the Assignment statement to

pseudoinstructions requires the knowledge of the fre¬
quency of Assignment statements in programs (given
in Table 2); the relative distribution of the types of
operands (given in Table 3); the relative distribution
of the types of operators; and the relative distribution
of the forms in which the Assignment statement ap¬
pears. We determine the distributions of the types of
operators and the forms of the Assignment statement
in this section. These distributions differ among pro¬
grams written for scientific, commercial, and systems
programming applications, so we consider each
separately.

Table 3.
Normalized distribution of operand types by application.

Bits Scientific1 Commercial2 Systems3 General

Quadword
Double-precision 64 7 0 0 2
Group (str,rec) 104 59 4 21

Long word
Real 32 53 0 0 18
Integer/address/

pointer 32 9 5 5
Word

Integer 16 40 9 54 34
Byte made up of: 0 23 37 20

Character 8 (22) (20)
Enumeration 8 (1) (12)
Boolean 8 (5)

Total % 100 100 100 100

' Derived from variable and function name distributions (see text). 1 Modified from the Dhrystone benchmark.
2 Estimated from Torsun and Al-Jarrah.25 4 An average of the other three distributions.

June 1987 67

Evaluating Microprocessors

Table 4.
Static frequencies (in percentages) of operators in Assignment statements or equivalents.

(Derived from Knuth;s functions not included.)

Scientific Commercial Systems General

Relative Relative Relative Relative

Operator Number frequency frequency frequency frequency

+ 10,593 23 19 35 26

+ 1 7,200 15 74 24 38
__ 10,298 22 3 26 17

* 12,348 27 3 11 14

/ 4,739 10 1 4 5

* * 681 2 1

* *2 427 1

Total % 100 100 100 100

Scientific programs. Several studies have counted
operator frequencies in statements (see Weicker for a
summary13). Knuth has made static counts of the
operators in Assignment statements in scientific pro¬
grams.5 Knuth found that 68 percent of all assign¬
ments were of the form A = B, and that 12.5 percent
were of the type A = A op B. Using his complexity
values for the Assignment statements, we can esti¬
mate that 11 percent were of the form A = B op C,
in addition to the previous 12.5 percent. Knuth also
found that 40 percent of additions were simply in¬
cremented by one. Interpretation of his table shows
that 3.9 percent of statements fall into the form A =
B op C op D. Only 4.6 percent of statements have
more operations, and we assumed that there were
four operands to simplify further estimations. The
relative percentages of operators that Knuth found
are given in Table 4.

Commercial programs. For comparison of state¬
ment types, we combined the Cobol Move and Add
statements and said they were equivalent to an
Assignment statement. Here we have to consider the
original statement types. Torsun and Al-Jarrah did a
thorough dynamic analysis of Cobol programs.25
They found that in the Move statement (26.9 per¬
cent), the average number of operands was two, or
basically, one string is moved to another location,
where the string is about 13 bytes long. A small
percentage of these moves implied a translation of
types. In the Add statement (19.8 percent), about 80
percent of the executed instructions were similar to
an increment (add a constant to a computational
variable). We attribute the remaining 20 percent of
Add statements to the form C = A + B. We con¬
sider the Subtract statement (0.7 percent) and the
Multiply statement (0.6 percent) to be two-operand

statements as well. Compute (0.4 percent) will be
considered to be a three-operand statement.

Systems. We have taken the arithmetic operator
frequencies from the Dhrystone benchmark (note
that Table XI of Weicker’s paper contains some
typographical errors). We have assumed that 40 per¬
cent of the additions are increments to correspond
with the Fortran findings. Table 4 lists the operator
frequencies. The distribution of forms of the Assign¬
ment statement is also taken from the Dhrystone
benchmark (adapted from Weicker’s Table VIII).
Table 5 summarizes the forms of the Assignment
statements that we have used in the synthetic instruc¬
tion mix.

Pseudoinstructions

We have determined the operations that are to be
performed and the operand types on which the oper¬
ations are being performed. Now, we can determine
what pseudo-operations should be used in the syn¬
thetic instruction mix. Table 6 summarizes the
pseudoinstructions. These instructions are all
memory-to-memory instructions, since the majority
of HLL operations work directly with memory.

In choosing these pseudoinstructions, we took into
account many reasons. Consider each of the pseudo¬
instructions separately.

• The Move8 instruction implements the character,
enumeration, and Boolean operand moves. It is also
used for smaller portions of the string movement. In
8-bit processors, the 8-bit Move gives a significant
advantage to comparisons using 16-bit Moves.

• Move 16 is the major Move instruction for integer
numbers. Most integers can be represented with a

68 IEEE MICRO

Table 5.
Forms of the Assignment statement or equivalent. Frequencies are stated in percentages.

Form Scientific1 Commercial2 Systems3 General4

A = B 68 55 66 64
A = A op B 12.5 33 6 17
A = B op C 11 11 24 15
A = B op C op D 3.9 1 2 2
A = B op C op D op E 4.6 0 2 2

Total % 100 100 100 100

' Based mainly on Knuth’s Fortran data.5
2 Based on data from Torsun and Al-Jarrah.25
3 Based on the Dhrystone systems benchmark.
4 The average of the other three types. The probabilities of these forms is adjusted in the overall mix by the probability of the

Assignment statement.

Table 6.
Pseudoinstructions used in

the synthetic instruction mix.

Form

Move8 A to B
Move 16 A to B
Move32 A to B
Load32 A to Reg
lncrl6 A + 1 to A
Add8 A to B
Add 16 A + B to C
Add32 A + B to C
Fadd32 A + B to C
Fadd64 A + B to C
Mull6 A * B to C
Fmul32 A * B to C

16-bit value. Turbo-Pascal for example, does not
allow a 32-bit integer representation.41 Move 16 gives
a 16-bit processor a significant advantage in com¬
parison with 32-bit processors.

• The Move32 instruction moves a variety of oper¬
ands: long integer and standard reals, as well as ad¬
dresses during a Call. Long string Moves are made up
of three of these Moves. The “integers” represented
by the 32-bit values come from the commercial area
where more accurate values are required for fixed
decimal representation. Repetitions of this 32-bit
Move make up long string Moves. (If 64-bit pro¬
cessors become available, a new synthetic benchmark
should be formulated with a 64-bit Move.)

• Load32 moves an address into a register. This in¬
struction simulates a Goto instruction, which involves
loading a register. It is also used in the Call statement
equivalent. We use a 32-bit value based on large
memory operation or an equivalent.

• The Incrl6 is the only one-address instruction; all
other instructions involve two or three addresses.
Loops are normally controlled by integer indexes.
The arithmetically frequent increment translates into
a much faster instruction than an Add in most cases.
Since integers are normally 16-bit values, we did not
choose a 32-bit increment.

• The Add8 instruction should really be a Sub¬
tract, used to compare two values. But we assume
that an Add and a Subtract instruction are roughly
equal in timing; only Add (and not Subtract) has
been included in the various word sizes and forms.

• Add 16 is the major integer computational in¬
struction. Like all of the following instructions, it is a
three-operand memory-to-memory operation.

• Add32 is used mainly for commercial program¬
ming where larger integers keep accuracy for ac¬
counting purposes. This instruction is also used in
place of the Subtract instruction for testing equality
in If statements. Since addresses are assumed to be
32-bit values, any address calculations, such as those
using strings, include 32-bit operations.

• The Fadd32 floating-point addition is used
almost exclusively in the scientific area. However, it
usually requires significantly different computing
time than does 32-bit integer Adds and so must be
used in benchmarking for scientific and general
benchmarking.

• The Fadd64 double-precision floating-point
operations are not common, but they do take con¬
siderably more time than regular floating-point
operations. The double-precision floating-point

June 1987 69

Evaluating Microprocessors

Multiply and Divide instructions have been translated
to Fadd64, since the evaluation times should be
similar and the relative frequencies of the other
double-precision operations is small.

• In Mull6 two 16-bit numbers are multiplied to
produce a 16-bit result. The execution time of this in¬
struction is likely to be similar to a 16-bit Divide, so
16-bit divisions also are translated into the Mull6
pseudo-operation. We mapped all operand sizes of in¬
teger multiplication and division to this instruction.

• In Fmul32 two real numbers are multiplied to
produce a resulting 32-bit number. Fmul32 has been
used to represent real 32-bit division as well.

Usually, the instructions do not translate according
to a strict set of rules when considering specific mi¬
croprocessors. This happens because the processors
are usually a mix of 8-, 16-, and 32-bit instructions.

Table 7.
Pseudoinstructions due to

A = B or Move command.

Bits

Operand length

8 16 32 64 104

Move8 10 0
Move 16 0 10
Move32 0 0 1

0 1
0 0
2 3

Determining the synthetic mix of
pseudoinstructions

Using the statement frequencies from Table 2 and
from Table 5, we can generate a set of the frequen¬
cies of the statements of different forms for the four
application categories. The problem then is to trans¬
late these forms of statements into our pseudo¬
instructions. Each of the statement forms will
generate a different set of pseudoinstructions, so con¬
sider each statement form separately.

• The A = B statement form is simply a Move in¬
struction. In our pseudoinstructions, it generates one
or more Move commands of a length depending on
the lengths of the operand. The number of Move in¬
structions generated for the type of operand is given
in Table 7.

• A = A op B is a fairly standard two-operation
instruction between two operands stored in memory.
Although the two address forms of actual machine
instructions are significantly different from the three-
address forms, we decided to keep the instruction mix
reasonably simple. We assumed that this two-operand
form is equivalent to the time for executing a three-
operand form, minus one half of the time to execute
a Move instruction of the proper length.

• A = B op C is the standard memory-to-memory,
three-address instruction form. Typically in a two-
address machine it compiles to a sequence of the
form:

Load B to register;
Operate from C into register;
Store register to memory location A.

Table 8.
Translations of operator/operand pairs into pseudoinstructions.

Operand type

Operator
Form Byte Inti 6 Int32 Real32 Real64 Strl04

+ Add8 Add 16 Add32 Fadd32 Fadd64 3 * Move32
+ Move8

+ 1 Add8 Incrl6 Add32 Fadd32 Fadd64 Add32

— Add8 Add 16 Add32 Fadd32 Fadd64 3 * Add32
+ Add8

* Mull6 Mull6 Mull6 Fmul32 Fadd64 Add32

/ Mull6 Mull6 Mull6 Fmul32 Fadd64 Add32

* * 2 * Move8 5 * Fadd32 5 * Fadd32 5 * Fadd32 17* Fadd64 Add32
+ 6*Fmul32 + 6*Fmul32 + 6 * Fmul32 — 18*Move32
—5*Move32 —5 * Move32 —5*Move32

* *2 Mull6 Mull6 Mull6 Fmul32 Fadd64 Add32

70 IEEE MICRO

Table 9.
Number of pseudoinstructions generated

by the translation of the If statement.

Pseudo¬
instruction Byte Intl6

Operand type

Int32 Real32 Real64 Strl04

Load32 1 1 1 1 1 1

Move32 0 0 0 0 -0.5 -1

Add8 1 0 0 0 0 1

Add 16 0 1 0 0 0 0

Add32 0 0 1 1 2 3

The instructions that this form of statement generates
are shown in Table 8.

• A = B op C op D is similar to the standard
arithmetic Assignment statement shown above. How¬
ever, it has an additional operation that should be
made from memory to register. We estimated our in¬
structions for memory-to-memory operation. Our
equivalent is obtained by performing two standard A
+ B op C operations, minus one half of a Move
operation. Even on a processor with a three-address
architecture, this should give a fair representation of
the instruction timing for the statement. We assume
that the operand type is the same for all operations in
the statement.

• For A = B op C op D op E we use the same as¬
sumptions as above and assume three times the in¬
struction weighting from Table 8 and subtract one
Move of the corresponding operand length. These
multiple-operation statements occur infrequently, en¬
suring that few errors should be introduced by this
approximation.

• In the If statement we assume that a comparison
and a choice of program flow is made. This corre¬
sponds roughly to a subtraction and a register (pro¬
gram counter) load. The comparison must be done
for the length of the operand. However, floating¬
point operations are not necessary even for non¬
equality testing. Table 9 shows the translation of the
If statement into pseudo-operations.

• The Goto statement is simply a Load32 instruc¬
tion, since its function is to transfer data to a specific
location in full memory.

• We assume that the Call statement translates into
two Load32 instructions and two Move32 instruc¬
tions to perform two transfers and two parameter
stores. Although it is likely we will find a stack in¬
struction, this should give us a reasonable equivalent.

Using a machine Call instruction is not likely to give
a better result because of the variety of stack opera¬
tions or transfers occuring in high-level programming
languages.

• The Do or loop instruction increments a counter,
comparing the counter with some control value and
branching to some location in memory. Therefore we
translated it as an Incrl6, a Compare in the form of
Add 16, and a branch in the Load32 form. These
translations are independent of operand statistics,
since loops are most frequently integer loops.

Generating the pseudo-operation
mix

Now that we have stated the basic translations, we
must perform the calculations for each of the ap¬
plication areas so they can be translated into the
pseudoinstruction mix. We do this by calculating the
number of occurrences of each of the pseudo¬
instructions from the previous tables and writing
descriptions of the instructions. Table 10 lists the for¬
mulae used in these calculations.

The formulae in Table 10 are based on the prob¬
abilities of: the statement forms such as p(A = B)
from Tables 2 and 5; the operand types such as
p(byte) from Table 3; and the operator types such as
p(-I-1) from Table 4. We developed the equations
from the explanation in this section and Tables 7, 8,
and 9, which explain how the statement types get
translated to the pseudoinstructions.

When we use the dynamic instruction frequencies
from Table 2 in the preceding equations along with
the probabilities in Tables 3, 4, and 5, we achieve the
relative instruction frequencies. We normalize these
frequencies, so that we obtain the probability distri¬
butions of the different instruction types (of our

June 1987 71

Evaluating Microprocessors

Table 10.
Pseudoinstruction counts based on probabilities of operators,

operands, statement frequencies, and forms.

MOVE8 = p(A=B)*{p(byte)+p(strl04)}
- (p(byte)*[p(+)+p(+l)+p(-)] + p(strl04)*p(+)}

* (p(A=AopB)*.5+p(A=BopCopD)*.5+p(A=BopCopDopE)}
+ (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)}

* (2*p(byte)*p(**) + p(strl04)*p(+)}

MOVE16 = p(A=B)*p(intl6)
-{p(intl6)+[p(byte)+p(int32)]*[p(*)+p(/)+p(**2)]}

{p(A=AopB).5+p(A=BopCopD)*.5+p(A=BopCopDopE)}

MOVE32 = p(A=B)*{p(int32)+p(real32)+2*p(real64)+3*p(strl04)}
-(p(int32)+p(real32)+2*p(real64)}

(p(A=AopB).5+p(A=BopCopD)*.5+p(A=BopCopDopE)}
+ (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)}

*{p(strl04)*3*p(+)
“ P(**)*[5*[p(real32)+p(int32)+p(intl6)]+18*p(real64)]}

- p(IF)*{p(real64)*.5 +p(strl04)}
+ 2*p(CALL)

LOAD32 = p(IF) + p(GOTO) + 2*p(CALL) + p(DO)

INCR16 = p(intl6)*p(+l)
*(p(A=AopB)+p(A=BopC)+2 *p(A=BopCopD)+3*p(A=BopCopDopE)}
+ p (DO)

ADD8 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)}

* (p(byte)*[p(+)+p(+1)+p(-)]+p(strl04)*p(-)}
+ p(IF)*p(strl04)

ADD16 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)}

p(intl6){p(+)+p(”)}
+ p(IF)*p(intl6) + p(DO)

ADD32 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE))

* (p(int32)*[p(+)+p(+1)+p(-)]
+p(strl04)*[p(+l)+3*p(-)+p(*)+p(/)+p(**)+p(**2)]}

+ p(IF)*(p(int32)+p(real32)+2*p(real64)+3*p(strl04))

FADD32 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE))

* (p(real32)*[p(+)+p(+l)+p(-)]
+5*p(**)*[p(real32)+p(int32)+p(intl6)]}

FADD64 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)}
* p(real64)*(p(+)+p(+l)+p(-)+p(*)+p(/)+p(**2)+17*p(**)}

MUL16 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)}

* [P(*)+P(/)+P(**2)] * (p(byte)+p(intl6)+p(int32))

FMUL32 = (p(A=AopB)+p(A=BopC)+2*p(A=BopCopD)+3*p(A=BopCopDopE)}

* (p(real32)*[p(*)+p(/)+p(**2)]
+ 6*p(**)*[p(real32)+p(int32)+p(intl6)]}

72 IEEE MICRO

pseudoinstructions) in each type of computing. These
are given in Table 11.

Table 11 does not show the relative frequencies of
executing these instruction types in these applications.
Instead, the table lists the weightings of this set of in¬
structions to determine the relative performance of
the processors as a whole. The assumptions made in
subtracting Move instructions to remove the effect of
the storing of intermediate values in Assignment
statement evaluation means that the distribution is
not correct for Moves. Moves have been traded off
for the more-powerful addressing modes of three-
operand instructions.

Considering this limitation of the synthetic instruc¬
tion mix, we can compare our mix with the other in¬
struction mixes that have been used in performance
evaluation. The other values in Table 12 have been
taken from Bell et al.9

It is difficult to compare the instruction mixes
because (1) many instruction types may be equivalent
for execution, and (2) seemingly similar instruction
types may require widely varying execution times.

Table 11.
Distribution of pseudo-operations used in mixes.

Pseudo¬
operations Scientific Commercial Systems General

Move8 0 13.7 11.6 9.6
Move 16 11.5 1.6 15.4 8.1
Move32 21.7 26.5 9.9 21.8
Load32 28.1 19.4 30.9 24.4
Incrl6 2.8 2.0 4.1 3.3
Add8 0 8.7 5.8 5.2
Add 16 10.6 2.4 15.8 7.8
Add32 9.8 25.5 4.2 14.9
Fadd32 6.6 0 0 2.3
Fadd64 1.5 0 0 0.3
Muil6 2.4 0.2 2.3 1.4
Fmul32 5.0 0 0 0.9

Total % 100 100 100 100

Table 12.
Instruction mix weights.

Knight3 This work

Instruction Arbuckle2 Gibson4 Scientific Commercial General

Fixed +/— 6 10(25) 25(45) 31

Multiply 3 6 1 1.4

Divide
Floating

1 2

2.6 + /—
Floating

9.5 10

0.9 multiply 5.6
Floating

divide
Load/store/

2.0

64 move 28.5 25
Indexing
Conditional

22.5

branch 13.2 20
Compare
Branch on

24

character 10
Edit 4
I/O initiate
Other 18.7

7
72 74

June 1987
73

Evaluating Microprocessors

Table 13.
Clock cycles required to execute the pseudoinstructions

Pseudo¬
instruction 18085 1286/287* MC68000 MC68020 MV/8000

Move8
Move 16
Move32
Load32
Incrl6
Add8
Add 16
Add32
Fadd32
Fadd64
Mu!16
Fmul32

26
32
64
36
38
43
62

139
2000
4000
1400
2500

16
16
32
10
14
30
30
60

650
780
64

688

20
20
28
16
16
36
36
50

232
464
102
894

9.5
9.5
9.5
6
9

17
17
17

150
300
42

300

1.1
0.88
1.32
0.66
1.32
1.76
1.54
6.82
2.64

43.34
3.41
3.96

*The 1286/287 time is quoted in crystal clocks instead of system clocks. These times must be multiplied by 1.05 to get average times
due to instruction fetches.

Table 14.
The pMIPS ratings determined for various microprocessors.

Processor 18085 1286/287 MC68000 MC68020 MV/8000
Speed (MHz) 5 16* 8 16.67 1
Pseudo¬
instruction

Scientific 0.01 0.14 0.09 0.43 0.40
Commercial 0.07 0.48 0.26 1.44 0.38
Systems 0.06 0.70 0.31 1.50 0.71
General 0.03 0.31 0.19 0.93 0.45

♦Xtal frequency ratings are given for processors using memory with no wait states.

Translating to specific
microprocessor instructions

Now that we have determined the relative instruc¬
tion mix, we must look at the time it takes to execute
these instructions on various microprocessors. Here,
we look specifically at the Intel 8085,42 the Intel
80286/80287,43 the Motorola 68000,44 and the Moto¬
rola 68020.45 In addition, we have included the Data
General MV/8000 as a comparison with a standard
super-minicomputer.46 The pseudoinstruction trans¬
lations to the actual machine code appear in the ac¬
companying box. Table 13 lists the number of clock
cycles required to execute each pseudoinstruction on
each of the processors. The MV/8000 data appears as

actual average execution times in microseconds, since
its clock is not adjustable by users.

When we include these execution time values in the
instruction mix weightings, we obtain the perfor¬
mance values given in Table 14. The performance
values are quoted in pMIPS, which are the millions
of the pseudoinstructions executed per second. These
pseudoinstructions are carried out from memory to
memory, actions which require more time to execute
than the simpler register-to-register operations. High-
level languages do most of their work from memory
to memory, as shown previously. These pMIPS
ratings reflect performances of more than the instruc¬
tions executed in most computers. They can be ex¬
pected to be slower to execute than register-to-regis-

74 IEEE MICRO

Translation of pseudoinstructions into specific
assembly language instructions for selected processors

The time to execute each of the 12 pseudo¬

instructions must be determined for each micro¬

processor of interest. Each pseudoinstruction should

be translated into the fastest set of assembly lan¬

guage instructions for the specific microprocessor.

The clock cycle time required to execute each of

the assembly language instructions is usually found

in the manufacturer’s documentation. Some estima¬

tion may be necessary for difficult instructions or to

adjust for the effects of cache memory and pipe¬

lined instruction execution.

Here we give the assembly language instructions

and the execution time for the instructions in system

clock cycles (based on no wait states for memory

accesses) for several microprocessors: the Intel

8085, the Intel 80286/80287, and the Motorola

68000 and 68020. The MV/8000 super-mini¬

computer execution times are also given for

comparison. The timing results for the pseudo¬

instructions are summarized in Table 13.

The Intel 8085, an updated version of the 8080

microprocessor, is also similar to the Z80 micro¬

processor. All three have 8-bit processors with some

limited 16-bit processing capabilities. The standard

fast version of the 8085 operates at 5 MHz. A ver¬

sion of the Z80 processor operates at 10 MHz.

Please refer to Table A.

In the calculations for the Intel 80286/80287

shown in Table B, we use the basic system clock,

since it is divided by two for the CPU and by three

for the floating-point processor. This is the same as

calling the IBM PC AT a 12-MHz processor. With

this system clock, there are four clocks to the bus

(memory) cycle. We use real address mode timings

instead of virtual address mode timings. The in¬

struction clock timings are ideal timings. Intel

suggests that 5 percent be added for instructions

that execute faster than they can be fetched. The

timings for the individual instructions are given,

then the adjustment is added into the total weighted

instruction execution time.

Table A.

The Intel 8085.

Pseudo¬
instruction Machine code

Clock

cycles

Move8 LDA datal 13

STA data2 13

Move 16 LHLD datal 16

SHLD data 2 16

Move32 LHLD datal 16

SHLD data2 16

LHLD datal+ 2 16

SHLD data2 + 2 16

Incrl6 LHLD datal 16

1NXH 6

SHLD datal 16

Load32 LHLD datal 16

XCHG 4

LHLD data 1 + 2 16

Add8 LDA datal 13

LX1 #data2,HL 10

ADD M 7

STA data3 13

Add 16 LHLD datal 16

XCHG 4

LHLD data2 16

DADD 10

SHLD data3 16

Add32 LHLD datal 16

XCHG 4

LHLD data2 16

DADD 10

SHLD data3 16

LHLD datal+ 2 16

XCHG 4

LHLD data2 + 2 16

JNC next (7 + 10)/2= 9

INXH 6

next DAD D 10

SHLD data3 + 2 16 139

Fadd32 est 2000

Fadd64 est 4000

Mull 6 est 1400

Fmul32 est 2500

June 1987
75

Evaluating Microprocessors

Table B.

The Intel 80286/80287.

Psuedo-
instruction Machine code pclocks

System
clocks

Move8 MOV datal, AL 5 10
MOV AL,data2 3 6

Move 16 MOV datal,AX 5
MOV AX,data2 3 16

Move32 MOVE 16
MOVE 16 16 32

Load32 MOVE data,AX 5 10

Incrl6 INC data 7 14

Add8 MOV datal,AL 5
ADD data2,AL 7
MOV AL,data3 3 30

Add 16 MOV datal, AX 5
ADD data2,AX 7
MOV AX,data3 3 30

Add32 MOV datal,AX 5
ADD data2,AX 7
MOV AX,data3 3
MOV data4,AX 5
ADC data5,AX 7
MOV AX,data5 3 60

Fadd32 FLD datal,ST(0) 38-56 141
FADD data2,ST(0) 90-120 315
FST ST(0),data3 84-90 194 650

Fadd64 FLD datal,ST(0) 40-60 150
FADD data2,ST(0) 95-125 330
FST ST(0),data3 96-104 300 780

MuI16 MOV datal,AX 5
IMUL data2 24
MOV AX,data3 3 64

Fmul32 FLD datal,ST(0) 38-56 141
FMUL data2,ST(0) 110-125 353
FST ST(0),data3 84-90 194 688

76
IEEE MICRO

Table C.
The Motorola 68000 and 68020.

Psuedo-
instruction Machine code Best

68020
Worst Cache 68000

Move8 MOVE.B A0@(datal),A0@(data2) 6 13 8 20

Move 16 MOVE.W A0@(datal),A0@(data2) 6 13 8 20

Move32 MOVE.L A0 @ (data 1), A0 @ (data2) 6 13 8 28

Load32 MOVE.L A0@ (datal), A1 3 9 7 16

Incrl6 ADDQ.W * <l>,A0(datal) 6 12 9 16

Add8 MOVE.B A0@(datal),Dl 3 9 7 12

ADD.B A0@(data2),Dl 3 9 7 12

MOVE.B Dl,A0@(data3) 3 7 5 12

Add 16 MOVE.W A0@(datal),D1 3 9 7 12

ADD.W A0@(data2),Dl 3 9 7 12

MOVE.W Dl,A0@(data3) 3 7 5 12

Add32 MOVE.L A0@ (datal),D1 3 9 7 16

ADD.L A0@(data2),Dl 3 9 7 18

MOVE.L Dl,A0@(data3) 3 7 5 16

Fadd32 est from Motorola software 150 232

Fadd64 est 300 464

Mull6 MOVE.W A0@(datal),D1 3 9 7 12

MUL.W A0@(data2),Dl 28 34 32 78

MOVE.W Dl,A0@(data3) 3 7 5 12

Fmul32 est 300 894

Table C presents calculations for the Motorola

microprocessors. Internally, the Motorola 68000 is a

32-bit processor; externally it is a 16-bit processor.

The 68020, however, is totally a 32-bit processor.

The two machines are compatible in software.

The Motorola 68020 has an instruction cache

that allows instructions to execute faster than could

be done from memory. The specifications quote

three timings for the 68020’s instruction execution

clock cycles: best, worst, and cache. We quote all

the times on the chart, but we average the best and

worst case to estimate performance.

The Data General MV/8000, an older, 1-MIPS

super-minicomputer, is a two-address, 32-bit

extension to the Nova and Eclipse architectures. We

quote the timings shown in Table D in micro¬

seconds for average instruction execution time.

June 1987
77

Evaluating Microprocessors

Table D.

The Data General MV/8000.

Psuedo-
instruction Machine code Timings

Move8 LLDB data 1, A 0.44
LSTB A,data2 0.66

Move 16 LNLDA data 1, A 0.44
LNSTA A,data2 0.44

Move32 LWLDA data 1,A 0.66
LWSTA A,data2 0.66

Load32 LWLDA data 1, A 0.66
lncrl6 LNISZ datal 1.32
Add8 LLDB datal,A 0.44

LNADD data2,A 0.66
LSTB A,data3 0.66

Add 16 LNLDA datal,A 0.44
LNADD data2,A 0.66
LNSTA A,data3 0.44

Add32 LWLDA datal,A 0.66
LWADD data2,A 5.50
LWSTA A,data3 0.66

Fadd32 LFLDS datal,FPAC 0.66
LFAMS data2,FPAC 1.54
LFSTS FPAC,data3 0.44

Fadd64 LFLDD datal,FP AC 1.10
LFAMD data2,FPAC 41.36
LFSTD FPAC,data3 0.88

Mull6 LNLDA datal,A 0.44
LNMUL data2,A 2.53
LNSTA A,data3 0.44

Fmul32 LFLDS datal.FPAC 0.66
LFMMS data2,FPAC 2.86
LFSTS FPAC,data3 0.44

ter, or memory-to-register operations. This fact il¬
lustrates the vagueness of the definition of MIPS.

When trying to quote a single value for the perfor¬

mance of a processor, it is best to choose the general-
performance pMIPS rating. Since the MV/8000 is
generally regarded as being a 1-MIPS processor, the
pMIPS rating is about half of a generally quoted

MIPS rating. The general pMIPS rating is based on
executing the more powerful memory-to-memory
pseudoinstructions, rather than the faster, but less-
powerful, register-based instructions.

We have developed a method for estimating

the performance of a microprocessor using
a synthetic instruction mix. The synthetic

instruction mix consists of a set of Move, Add, and

Multiply instructions. We chose pseudoinstructions
based on high-level-language considerations and
assumptions for two reasons. We tried to simplify the
set and ensure that the resulting pseudoinstructions

would be simple to determine for specific processors.
A major decision consideration in the determination
of the pseudoinstructions was to include various

operand lengths in the instruction set.

78 IEEE MICRO

A review of the statement forms used in high-level

languages was used to estimate statement distributions.
We determined operator and operand distributions

from studies of scientific, commercial, and systems
programs. From these statistics we could determine
equations for converting these application types to
relative instruction mixes of the pseudoinstructions.

We used specific processors as examples in trying

to determine the performance, or pMIPS, ratings.
Next, we converted pseudoinstructions to specific
processor assembly language instructions and deter¬

mined the clock cycles required to execute each
pseudoinstruction. We then applied the synthetic in¬

struction mix to the pseudoinstruction execution

times and obtained the pMIPS rating for the dif¬

ferent application areas.

The major advantages of the proposed synthetic

instruction mix are:

• It is relatively easy to evaluate;
• It determines the raw speed of the processor

rather than evaluating the combined CPU and lan¬

guage processor pair; and,
• It can be used to evaluate a processor that is not

available physically, such as during design and early

production phases of a microprocessor.

Many weaknesses can be found in the methods
used to determine these pMIPS ratings. However, any
method of performance evaluation is open to criti¬

cism. We feel that the pMIPS rating gives a good
comparative rating among processors. |jjj

References
1. H.C. Lucas, Jr., “Performance Evaluation and

Monitoring,” Computing Surveys, Sept. 1971, pp.

79-91.

2. R.A. Arbuckle, “Computer Analysis and Thruput
Evaluation,” Computers and Automation, Jan. 1966,

pp. 12-19.

3. K.E. Knight, “Changes in Computer Performance,”
Datamation, Sept. 1966, pp. 40-54.

4. J.C. Gibson, “The Gibson Mix,” IBM tech, report
TR2043, June 18, 1970.

5. D.E. Knuth, “An Empirical Study of Fortran Pro¬
grams,” Software P & E, 1971, pp. 105-133.

6. D.A. Patterson and C.H. Sequin, “A VLSI RISC,”
Computer, Sept. 1982, pp. 8-21.

7. D.A. Fairclough, “A Unique Microprocessor Instruc¬
tion Set,” IEEE Micro, May 1982, pp. 8-18.

8. R.P. Colwell et al., “Computers, Complexity and Con¬
troversy,” Computer, Sept. 1985, pp. 8-19.

9. C.G. Bell, J.C. Mudge, and J.E. McNamara, Computer
Engineering, A DEC View of Hardware Systems De¬
sign, Digital Press, Burlington, Mass., 1978.

10. J.C. McCallum, “Benchmark Results for Microcom¬
puters and Large Computers,” Data Processing, Oct.
1986, pp. 426-433.

11. J. Gilbreath and G. Gilbreath, “Eratosthenes
Revisited,” Byte, Jan. 1983, pp. 283-326.

12. H.J. Curnow and B.A. Wichmann, “A Synthetic
Benchmark,” The Computer Journal, Feb. 1976, pp.
43-49.

13. R.P. Weicker, “Dhrystone: A Synthetic Systems Pro¬
gramming Benchmark,” Comm. ACM, Oct. 1984, pp.
1013-1030.

14. D.F. Hinnant, “Benchmarking UNIX Systems,” Byte,
Aug. 1984, pp. 132-409.

15. B.A. Wichmann, Algol 60 Compilation and Assess¬
ment, Academic Press, Orlando, Florida, 1973.

16. B. Randell and L.J. Russell, ALGOL 60Implementa¬
tion, Academic Press, Orlando, Florida, 1964.

17. C.C. Foster, R.H. Gonter, and E.M. Riseman,
“Measures of Op-Code Utilization,” IEEE Trans.
Computers, May 1971, pp. 582-584.

18. “Computerworld’s Annual Hardware Roundup,”
Computerworld, Aug. 8, 1983, pp. 31-39.

19. “Hardware Roundup,” Computerworld, Aug. 19,
1985, pp. 24-34.

20. D. Grune, “Some Statistics on Algol 68 Programs,”
Sigplan Notices, July 1979, pp. 38-46.

21. A.G. Alexander and D.B. Wortmann, “Static and
Dynamic Characteristics of XPL Programs,” Com¬
puter, Nov 1975, pp. 41-46.

22. J.L. Elshoff, “A Numerical Profile of Commercial
PL/1 Programs,” Software P & E, 1976, pp. 505-525.

23. A.S. Tanenbaum, “Implications of Structured Pro¬
gramming for Machine Architecture,” Comm. ACM,
Mar. 1978, pp. 237-246.

24. M.M. Al-Jarrah and I.S. Torsun, “An Empirical
Analysis of Cobol Programs,” Software P&E, 1979,
pp. 341-359.

25. I.S. Torsun and M.M. Al-Jarrah, “Dynamic Analysis of
Cobol Programs,” Software P & E, 1981, pp. 949-961.

26. V.S. Foster, “Performance Measurement of a Pascal
Compiler,” Sigplan Notices, June 1980, pp. 34-38.

27. M. Shimasaki et al., “An Analysis of Pascal Programs
in Compiler Writing,” Software P&E, 1980, pp.
149-157.

28. R.P. Cook and I. Lee, “A Contextual Analysis of
Pascal Programs,” Software P & E, 1982, pp. 195-203.

29. G.R. Brookes, I.R. Wilson, and A.M. Addyman, “A
Static Analysis of Pascal Program Structures,” Soft¬
ware P&E, 1982, pp. 959-963.

30. H.J. Saal and Z. Weiss, “Some Properties of APL Pro¬
grams,” Proc. APL 75, 1975, pp. 292-297.

31. D.R. Ditzel, “Performance Measurements on a High-
Level Language Computer,” Computer, Aug. 1980, pp.
62-72.

June 1987
79

Evaluating Microprocessors

32. S.F. Zeigler and R.P. Weicker, “Ada Language Statistics
for the iMAX432 Operating System,” Ada Letters, May
1983, pp. 63-67.

33. P. Dobbs, “Ada Experience on the Ada Capability
Study,” Ada Letters, May 1983, pp. 59-62.

34. D. Lurie and C. Vandoni, “Statistics for Fortran Iden¬
tifiers and Scatter Storage Techniques,” Software
P&E, 1973, pp. 171-177.

35. S.K. Robinson and T.S. Torsun, “An Empirical Anal¬
ysis of Fortran Programs,” The Computer Journal
1975, pp. 56-62.

36. D. Partridge and E.B. James, “Compiling Techniques
to Exploit the Pattern of Language Usage,” Software
P&E, 1976, pp. 527-539.

37. H.W. Whitlock, Jr., “Analysis of the Use of the 6502’s
Opcodes,” Dr. Dobb’s Journal, Mar. 1981, pp. 11-13.

38. D.W. Clark and H.M. Levy, “Measurement and Anal¬
ysis of Instruction Use in the VAX-11/780,” Proc.
Ninth Annual Symp. Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., 1982, pp. 9-17.

39. D. MacGregor and J. Rubinstein, “A Performance

John C. McCallum is a senior lecturer at the National
University of Singapore in the Department of Information
Systems and Computer Science. Before working there, he
taught in Canada and in Saudi Arabia. His research in¬
terests are in microcomputer applications and in the model¬
ing of information flow, whether in processors or in busi¬
ness organizations.

McCallum obtained his BSc in physics from the Universi¬
ty of Western Ontario, Canada, and his PhD in experimen¬
tal space science from York University in England. He is a
senior member of the IEEE.

Analysis of MC68020-based Systems,” IEEE Micro,
Dec. 1985, pp. 50-70.

40. M. De Prycker, “On the Development of a Measure¬
ment System for High Level Language Program
Statistics,” IEEE Trans. Computers, 1982, pp. 883-891.

41. Turbo Pascal Version 3.0, Reference Manual, Borland
International, 4585 Scotts Valley Drive, Scotts Valley,
CA 95066, 1985.

42. 8080/8085 Assembly Language Programming, Intel
Corporation, Santa Clara, Calif., 1979.

43. Microsystem Components Handbook, Vol. 1, Chap. 3,
Intel Corporation, Santa Clara, Calif., 1984.

44. MC68000 16-Bit Microprcessing Unit, ADI-814-R3
specification document, Motorola Semiconductors
Products Inc., 3501 Ed Bluestein Blvd., Austin, Texas,
1982.

45. Motorola Inc., MC68020 32-Bit Microprocessor User’s
Manual, Prentice-Hall, Englewood Cliffs, N. J., 1984.

46. Eclipse MV/8000 Principles of Operation, Data General
Corporation, 4400 Computer Drive, Westboro, MA
01580, 1980.

Tat-Seng Chua joined the Department of Information
Systems and Computer Science at the National University
of Singapore as a lecturer in 1983. Before that time he
worked with the British Gas Corporation in the United
Kingdom as part of his PhD thesis to develop software for
the simulation of the British Gas Transmission Network.
His current research interests include microprocessor sys¬
tems, visual programming, and the modeling of com¬
munication protocols.

Chua received the BSc degree in computer science and
civil engineering and the PhD degree in computer science
from the University of Leeds, UK, in 1979 and 1983.

Questions concerning this article can be directed to either author at the Department of Information Systems and Computer
Science, National University of Singapore, Lower Kent Ridge Road, Singapore 0511.

Reader Interest Survey

Indicate your interest in this article by circling the appropriate number on the Reader Interest Card.

High 159 Medium 160 Low 161

80 IEEE MICRO

Department

MicroLaw
Richard H. Stern
Law Offices of Richard H. Stern
2101 L Street NW, Suite 800
Washington, DC 20037

Software copyright developments

Screens and interfaces for computer
programs protected by copyright

In the December 1986 issue of IEEE
Micro we discussed Microstuf’s suit
against SoftKlone over Crosstalk

XVI and Mirror, along with the views of
Microstuf’s counsel that “look and fed”
piracy of that type deserved to be sup¬
pressed. On March 31, 1987, the federal
district court in Atlanta ruled in favor of
Microstuf and permanently enjoined the
manufacture and distribution of Mirror
so long as it duplicated the main menu
of Crosstalk XVI (shown on p. 77 of the
December issue). (Digital Communica¬
tions Associates, Inc. v. SoftKlone Dis¬
tributing Corp.) SoftKlone has indicated
that it will revise the main menu of Mir¬
ror rather than be forced out of business
pending any appeals.

To refresh your memory, Crosstalk is a
very successful asynchronous modem
communications program for use with
IBM PC-type microcomputers. It has a
set of 87 commands, settings, and pa¬
rameters (all of which I refer to as com¬
mands) featured in its main menu, and
the user is supposed to set them in accor¬
dance with the needs of his system.

Because of the number of commands,
a uniliteral symbol for each command
is not possible. Microstuf therefore
adopted a set of biliteral abbreviations
for the various commands. For example,
DU for DUplex, PA for PArity, SP for
SPeed—other commands are LOad,
POrt, QUit, STop, WRite, XMit. On the
status screen, the capital letters shown
here in boldface are displayed in high-
intensity monochrome, and the user
understands that the high-intensity bi¬
literal is the code for the whole word. To

set a parameter, such as speed, the user
enters the biliteral and the correct speed;
for example, for a rate of 1200 baud, the
user enters SP1200.

SoftKlone decided to market an
emulator using the same status screen,
apparently on the theory that the public
is used to Crosstalk and is unwilling to
learn to use a different user interface.
The court held that to be copyright in¬
fringement.

What are the implications for soft¬
ware innovators and emulators?
At least superficially, the court

seems to want to close the door on
emulators, by forcing them to develop
different-looking user interfaces. There¬
fore, whoever first appropriates the most
logical and convenient user interface for
a particular function would seem to be
able to prevent latecomers from follow¬
ing suit. The court seems to believe that
it was not doing that, but its belief rests
on erroneous suppositions about how
user interfaces for microcomputer soft¬
ware work and about the range of op¬
tions available to designers of menus for
microcomputer software.

At the outset, the court refused to
consider that DCA’s copyright in the
computer program covered the screens.
However, DCA had registered a separate
copyright claim for the screen as a com¬
pilation of parameters and commands
arranged on the status screen in an
original manner. This was, for obscure
reasons, classified as a “literary work,”
although the court protected the graphic
and visual aspects of the status screen,

rather than its literary content. The court
found the “compilation” to be copy¬
rightable and to have been infringed.

The court began its analysis with a
statement of the customary idea/expres¬
sion dichotomy, noting that particular
expressions of ideas are protected under
the copyright laws. But ideas, as such,
are not so protected. The court then ap¬
plied the principle to the case before it by
finding that each of the following is an
idea: the use of a screen to reflect the
status of a program, the use of the
command-driven program, and the use
of biliterals to activate a command.

On the other hand, the court found
that the arrangement of biliterals on the
screen was an expression, because in this
program the order in which the user
enters the commands makes no dif¬
ference to the operation of the program.
For example, whether PArity is entered
before or after SPeed makes no dif¬
ference. Therefore, SoftKlone could
nave shuffled the rows and columns of
commands on the status screen without
impairing the program’s utility.

Even more important, the court found
that “the highlighting and capitalizing of
two specific letters of the parameter/
command...has no relation to how the
status screen functions,” and therefore
that is expression rather than idea. This
is the point at which I think the court fell
down, and the part of the ruling that
may create the most uncertainty and dif¬
ficulty for writers of microcomputer
software. The court asserted:

The defendants could have used a wide
variety of techniques to indicate which

June 1987 81

M icroLaw

symbols the user should type to effectuate
a command, e.g., different symbols could
have been chosen, or simply highlighting,
or capitalizing, or underlining the ap¬
propriate symbols, or any combination
thereof, or placement of the symbols in
parentheses or square brackets before or
after the parameter/command. The modes
of expression chosen by the plaintiff for its
status screen are clearly not necessary to
the idea of the status screen. Therefore, the
plaintiff’s mode of expression of the status
screen does not merge with the idea of the
status screen.

That is to say, the SoftKlone menu
designer should not have used the format
SPeed to represent that command, but
should instead have used one of the fol¬
lowing: speed, Speed (SP), [SP] Speed,
speed, SpeEd, SpeeD, sPEed, and so on.
(We might add these too: SP—speed,
SPEED—sp, speed: SP, speed = SP,
speed...SP.)

hat is simply foolish. Only four
screen attributes exist that are
available for a monochrome PC-

type microcomputer: high-intensity
video, inverse video, underline, and
blinking. That entirely exhausts the op¬
tions, besides capital and lowercase let¬
ters. The fourth attribute, blinking, is
useless. No one in his right mind would
use that for a status screen; it would an¬
tagonize any user and probably give the
user a headache as well. The underline
attribute is almost as useless. It clutters
up a screen, and it is not very effective in
letting letters stand out from the rest of
the text on the screen. That leaves two
usable attributes, high-intensity and in¬
verse video.

The use of high-intensity video in an
all-lowercase word, in my opinion, does
not sufficiently emphasize the selected
letters to make them easily and comfort¬
ably recognized by the user. We could try
to verify that, I suppose, by giving peo¬
ple flash card tests, but I believe readers
will agree with me either on the basis of
their reading the boldface text two para¬
graphs back or after trying it out on their
own microcomputers. Therefore, I be¬
lieve that it is necessary to combine high-
intensity video with caps for a good user
interface. The same is true, also, I
believe, for inverse video, although
perhaps not to quite the same extent. It
therefore begins to appear that the in¬
finite range of expressions available to
menu writers, which the court imagined,
is actually limited to something much

smaller—involving the use of inverse
video with, at best, either caps or lower¬
case letters (and perhaps only caps), and
high-intensity video with caps.

Let us turn to the other dimensions
that the court thought made for infinite
possibilities. Examination of the ex¬
amples shown above for use of other
than the first two letters will, I believe,
convince any unbiased viewer of the
wrongness of using other than the first
two letters of a command or other key¬
word. It confuses the user and looks
silly. It is simply nonintuitive and not
good practice to design a user interface
that way. Finally, the use of parentheses,
square brackets, and dashes to delineate
the command biliteral is slightly confus¬
ing and at any rate takes more space and
clutters up the screen. The use of equal

This use of copyright

law throttles
competitors and users.

It is getting very badly
out of hand.

signs may not be confusing, but it does
take up more room than simply empha¬
sizing the selected biliteral.

In short, we see that the best format
for a user interface of this type—or at
least, one of the three best—is preemp¬
ted by copyright law, as interpreted by
the court. The implication is that who¬
ever first appropriates the most desirable
format for a user interface can now pre¬
vent competitors from using that format
when they set out to imitate the origi¬
nator’s software, even though they write
their own code. And after another one
or two firms enter the market, all the
usable interfaces will be preempted.

Presumably, enthusiam for that notion
was responsible for Lotus’ suing Paper¬
back Software and Mosaic Software in
January 1987 for misappropriating the
look and feel of Lotus 1-2-3, and for
VisiCalc’s creators’ (SAPC) suing Lotus
in April 1987 for the same alleged rip-off
of VisiCalc’s look and feel.

Where VisiCalc took the look and feel
from, I cannot imagine. (That may be
the next lawsuit.) But, dollars to dough¬
nuts, the overwhelming majority of users
feels like this:

I expect to be able, without hindrance from
the legal profession or its greedy clients, to
enter the first letter or first two letters of a
command to invoke it, or else move the
cursor to the command and press Enter, on
any and all programs of the spreadsheet,
database, and similar types. I also expect to
enter FI for help, ESC or backslash for
escape from present screen, and slash for
command mode; and I am going to be very
unhappy if anybody expects me to learn
something different. I have a number of
similar expectations, and I do not want to
be forced to change them because of the
copyright laws. It is hard enough to learn
how to use these tools, without having to
learn to use a new kind of interface every
time, and I have preferable ways to spend
my time (such as drinking beer and watch¬
ing TV).

This use of copyright law to throttle
competitors, and also the user
community, is ridiculous. And it is

getting very badly out of hand. I have a
modest proposal for action by the Com¬
puter Society of the IEEE.

A standards committee (or if it is too
hard and time-consuming to go through
the IEEE bureaucracy, then a Software
Users Defense Committee) should estab¬
lish criteria for good user interfaces for
microcomputer programs. Part of this
effort (or all of it) should be criteria for
proper menus or screens or a set of
them. For example, where there are only
a few commands on a screen, the equal
sign or a box with vertical lines sepa¬
rating uniliteral commands from their
explanations will probably be considered
an acceptable alternative. But for
crowded screens, it may well be that we
will all agree that high-intensity video
and caps for the first one or two letters
of a command or keyword is the best op¬
tion, perhaps along with inverse video
for some uses.

Without going into the details of how
to prescribe the end result, my point is
that I would like to see an agreed-upon
approach to user interfaces. Then, I
would like to see it put into the public
domain for the benefit of users of com¬
puter programs, who do not want to use
unfriendly interfaces or learn to use
many different ones, and who would be
happiest if they kept seeing the same old
interface all the time.

The idea would be that anyone who
stuck to the IEEE interface would be im¬
mune from harassment under the copy¬
right laws. Say previous rights under the
copyright laws were asserted to some
technique that was part of the IEEE-

Continued on p. 89

82 IEEE MICRO

Department

MicroReview
Richard Mateosian
2919 Forest A venue
Berkeley, CA 94705
(415) 540-7745

In my April column I made some rash
statements about what I was going to
do this month. I’m not going to do

any of them. Instead, I’ve reviewed two
books that are similar to one another in
important ways. One deals with CD
ROMs and the other with desktop pub¬
lishing, two rapidly growing areas for
small computer applications. Each is
based on a relatively new hardware
technology that is quickly dropping in
price into the consumer product range.

The CD ROM book is written for de¬
velopers by developers, the other is writ¬
ten for end users by end users. Each
aims at giving the reader an orientation
to the given field. Both books were pro¬
duced quickly in an effort to bring out in
book form information of the currency
usually found only in periodicals. Both
show the bad effects of this haste, al¬
though 1 am not aware of factual errors
in either of them.

CD ROM 2: Optical Publishing, ed. by
Suzanne Ropiequet with John Einberger
and Bill Zoellick (Microsoft Press, Red¬
mond, Wash., 1987, 384 pp., $22.95)

Imagine 500 megabytes on a mass-
produced disk you can carry around in
your pocket and access with consumer-
grade hardware! It’s hard to grasp at
first, but it soon hits you that this is a
technology that you ought to find out
about.

The subtitle of this book is “A Prac¬
tical Approach to Developing CD ROM
Applications,” and that’s a pretty good
description. What’s a CD ROM? Here’s
the CD part, from the book’s glossary:

Compact Disc: The trademark name for
an injection-molded aluminized disc, 12 cm
in diameter, which stores high-density
digital data in microscopic pits that a laser
beam can read. Conceived by Philips and
Sony, it was originally designed to store
high-fidelity music for which Compact Disc
Digital Audio now is a standard format ac¬
cepted worldwide. Because of its very large

data storage capacity, the Compact Disc
now is used as a text/data medium in elec¬
tronic publishing (CD ROM).

The physical format used for storing
general-purpose digital data for personal
computers on CDs is established in the
CD ROM standard, also known as the
Yellow Book. The de facto logical for¬
mat standard is the High Sierra Group
Proposal, the work of a group of people
from Apple, DEC, Hitachi, Microsoft,
3M, Philips, Sony, and others. Under
these standards, a CD ROM contains
270,000 sectors of 2048 data bytes each,
or a total of more than 540 megabytes.

The most interesting CD ROM appli¬
cations probably haven’t been thought
of yet, but a typical current application
is an electronically published encyclo¬
pedia with full support for browsing and
for following references from section to
section. Potential developers of applica¬
tions like this will find that the book is
an excellent introduction and reference,
but there is one caveat before we proceed
with the details. The publisher is a di¬
vision of Microsoft Corporation, an ac¬
tive participant in the development of
this field, so you may not be getting total
objectivity.

The book is a collection of 16 essays,
mostly by different authors, covering
just about anything that a prospective
developer of CD ROM applications
might want to know. The authors are ex¬
perts in their fields, and each chapter is
well organized and full of interesting
material. I recommend reading this book
cover to cover, then keeping it around
for reference.

Actually, the book starts off pretty
badly. Page one contains a typographical
error, an example of sloppy editing, and
an absurd statement. In fact, if you’re
sensitive to this sort of thing, you ought
to start with Chapter 2. The editing
never gets much better, but the typos
taper off and the contents become a lot
more substantial. (Having complained so

pointedly about the editing, I suppose I
ought to give an example. My favorite is
the statement that certain techniques
“...are never perfect—almost always
retrieving far more irrelevant data than
you need.”)

The four chapters on text preparation
and retrieval make up the most issue-
oriented section of the book and one of
the most interesting. How, for example,
can existing textual material be trans¬
ferred to CD ROM in such a way that its
structure is visible to retrieval software?
Even though a huge proportion of every¬
thing published today is originally pro¬
duced on computers, many barriers exist
to accessing even the text of those origi¬
nals; recovering the structure without pro¬
hibitively expensive human intervention is
usually impossible. One answer suggested
in the book is to use the Standard for
Electronic Manuscript Preparation and
Markup devised by the Association of
American Publishers. Widespread use of
the AAP standard, it is suggested, will
depend upon the availability of word
processing software that supports it. Is
this a hint of Microsoft’s future plans?

Another interesting issue is searching
versus browsing as approaches to docu¬
ment retrieval. Searching, the “stan¬
dard” approach, is shown to have severe
problems. There seems to be an inverse
relation between the two key measures of
searching effectiveness: completeness and
relevance. The larger the list of docu¬
ments retrieved using a given search key,
the lower their average relevance to the
user’s problem. The higher the average
relevance of the documents retrieved, the
greater the proportion of relevant
documents that will not be retrieved.
Browsing, on the other hand, is more
natural and more effective, but it re¬
quires the system to know the structure
of documents, not just their text.

These issues are not new, but in the
past they have had to be faced only in
large systems. With CD ROMs far more
system designers will need to deal with

June 1987 83

M icroReview

these issues, and they will be doing so for
applications of a different scale, in which
the cost/benefit analyses of the various
approaches will depend upon different
parameters.

Another problem that is not new is
selecting the right index structures for
huge text databases. But the problem is
given a new twist in the CD ROM en¬
vironment. The read-only nature of CD
ROMs, their large capacities, and their
slow access times are all factors that in¬
fluence the selection of index structures.
For example, a lookup that requires six
disk accesses may be perfectly acceptable
for a standard hard disk but painfully
slow on a CD ROM.

Another interesting section of the
book provides a programmer’s view of
graphics and audio. Many books talk
about these subjects, but this one seems
to strike just the right balance between
brevity and thoroughness. The reader is
assumed to be intelligent and generally
sophisticated about computer technology
and applications, but is not assumed to
have a background in electronics or to
know much about graphics or audio.

If you decide to develop applications
for CD ROM, you will want to obtain
and study the High Sierra Group Pro¬
posal, currently on its way to becoming
an international standard. A chapter of
the book contains a description of the
proposed format and the issues behind
it, written by two members of the High
Sierra Group. The proposal defines a full
(Level Three) implementation, which
provides essentially all the needs of the
various sponsoring organizations.

Two standard subsets are specified.
Level One is for minimal systems, and
Level Two is slightly augmented to pro¬
vide for compatibility with CD-I. (CD-I
is a controversial proposed standard
hardware/software environment for con¬
sumer products to be delivered beginning
in 1988. This book contains little men¬
tion of CD-I and no mention of the con¬
troversy surrounding it.)

Two related subjects are the protection
and updating of the data in CD ROM
products. Those of you who regularly
read Richard Stern’s MicroLaw columns
will be familiar with many of the legal
issues in the area of protection of in¬
tellectual property, but the discussion in
this book focuses on the specific prob¬
lems raised by the nature of CD ROMs.
For example, the doctrine of first sale
gives the purchaser of a work the right to
display it publicly, while the copyright
holder retains the right of performance.
What these terms mean for a CD ROM

database, possibly containing music and
images, is not clear. If you’re going to
develop CD ROM applications, you’ll
want to know a lot more about issues
like these.

While updating of CD ROM data¬
bases has legal ramifications, the soft¬
ware issues are even more interesting.
The logical format embodied in the High
Sierra Group Proposal makes it possible
for one CD ROM of a multiple CD ROM
set to alter the interpretation of data on
other CD ROMs of the set. This makes it
possible for an updating CD ROM in ef¬
fect to delete or modify data previously
supplied. Thus, a database might be sup¬
plied on five CD ROMs, and periodic
updating of only the fifth CD ROM
could effectively update the entire set.

The book also contains practical ad¬
vice for potential developers. While the
one-minute business plan contained in
Chapter 2 isn’t worth much, there are
practical, advice-filled chapters on disk
origination and mastering, and there are
two interesting and instructive case
studies. And there’s an appendix called
“Resources,” which contains classified
listings of firms involved in the CD
ROM field.

If you read IEEE Micro and you don’t
already have a pretty good grasp of the
subjects in this book, then it’s a “must
read” for you.

The Art of Desktop Publishing, 2nd ed.,
Tony Bove, Cheryl Rhodes, and Wes
Thomas (Bantam, Toronto & New York,
320 pp., $19.95; $24.95 in Canada)

This book is subtitled “Using Personal
Computers to Publish It Yourself,” and
because that’s exactly what the authors
have done, you can get a good idea of
the pros and cons of being your own
publisher. The authors, by virtue of their
experience with this and other publishing
projects, can help to guide your steps
along this path, and the book, as a sam¬
ple product, can teach you lessons that
the authors didn’t make explicit.

The first question you should ask
yourself when considering a publishing
project is “What do I hope to accom¬
plish?” If your answer is along the lines
of getting your message out quickly and
correctly, then personal publishing is
worth considering. For example, the
authors produced this second edition in
two weeks. If, on the other hand, your
answer has a heavy component of im¬
pressing the reader with the quality of
the result, you’d better think seriously

about getting professional publishing
help. In this respect, a publishing project
is a lot like a hardware or software engi¬
neering project.

This book is written by three people
who are far from amateurs in publishing,
but the most generous grade I can give it
as an example of publishing is B-, and an
even lower grade could easily be justi¬
fied. On the other hand, I enjoyed read¬
ing the book and found parts of it to be
useful and informative. It has the flavor
of a collection of trade-press articles and
newsletter excerpts wedded to tutorial ar¬
ticles on page makeup programs (mostly
Pagemaker).

This makes a convenient package for
someone who doesn’t follow the trade
press, doesn’t subscribe to a newsletter,
and can’t learn enough from the manu¬
als accompanying the page makeup
programs.

At this point I should say that Aldus
Corporation shipped me Pagemaker for
the IBM PC when it came out in Febru¬
ary. I don’t know if this was true in the
past, but the manuals that accompanied
that shipment don’t seem to need to be
supplemented by outside tutorials.
They’re full of tutorial information and
production advice.

To pull all of the above pros and cons
into a recommendation, I’d say that
there are many people who will want or
need to learn more about personal pub¬
lishing and to purchase software and
equipment. If you’re one of these people
and you feel a little bewildered by all
you’ve heard about the “desktop pub¬
lishing revolution,” this book can help.

Next time
As noted earlier, last issue’s prediction of
future plans proved to be completely in¬
correct, largely because I simply didn’t
get far enough in reading Maurice Bach’s
Design of the UNIX (TM) Operating
System. I hope to finish that book and
to look at other interesting books and
software for the August issue.

Reader Interest Survey

Indicate your interest in this department
by circling the appropriate number on the
Reader Interest Card.

High 177 Medium 178 Low 179

84 IEEE MICRO

Department

MicroStandards

Michael Smolin
Smolin & Associates
3428 Greer Road
Palo Alto, CA 94303

At the March 1987 meeting of the
IEEE Standards Board several
new standards were approved.

Among them were:

• 802.5A, LAN: Station Management
(supplement to IEEE Std. 802.5-1985),

• 854, A Radix Independent Standard
for Floating-Point Arithmetic,

• 1014, Specification for a Versatile
Backplane Bus (VME), and

• 1016, Software Design Descriptions,
Recommended Practice.

A project newly authorized at that
meeting was PI 141, Forth: A Microcom¬
puter Language Standard. This project is
likely to become a joint project with X3.

our backplane bus standards proj¬
ects sponsored by the Technical
Committee on Microprocessors

and Microcomputers, or TCMM, have
passed their sponsor ballots. They have
been submitted to the IEEE Standards
Board for adoption as IEEE standards.
These projects are:

Seven new project authorizations are
being requested of the IEEE Stan¬
dards Board by the Computer So¬

ciety’s TCMM. These projects are:

• PI 151, Modula II, A Modular High
Level Programming Language,

• PI 152, Smalltalk, An Object Ori¬
ented Programming Language and
Environment,

• PI 153, Page Descriptor Language,
• PI 154, PILOT, A Program Instruc¬

tion Learning or Teaching Language,
• PI 155, A High Speed Backplane In¬

strumentation Bus,
• PI 156, Connectors and Mechanical

Packaging for High Reliability Bus
Structures, and,

• P1496, Rugged Bus, A Very High
Reliability Bus Structure.

In addition, a project authorization
has been requested for the revision of
IEEE 755, Extending High-Level Lan¬
guage Implementations for Micropro¬
cessors, a trial-use standard. This has

been a contentious standard. It has
already passed an appeal against its
adoption that was filed by The Pascal
Joint Committee chairman.

If these project requests are approved,
I will include the details of the scope and
list the chairman of each project in the
next issue of IEEE Micro.

On another note, James (Bob)
Davis, the chairman of the Micro¬
processor Standards Committee,

has appointed Paul Borrill to be the chair¬
man of P896.2, the project to develop a
Futurebus Firmware Standard. Borrill can
be reached at:

Spectra Tek US Ltd.
Swinton Grange
Malton
North Yorkshire Y017 OQR
England
Telephone: (0653) 5551.

Reader Interest Survey
• P896.1, the Futurebus Backplane,
• PI 101, the Mechanical Core Speci- Indicate your interest in this department

fications for Microcomputers, by circling the appropriate number on the Reader Interest Card.
• PI 196, A Simple 32-bit Backplane

Bus (Nubus), and
• P1296, A High Performance Syn- High 174 Medium 175 Low 176

chronous 32-bit Backplane Bus
(Multibus II). -

June 1987 85

Department

MicroNews

MicroNews features information of in¬
terest to professionals in the microcom¬
puter/microprocessor industry. Send infor¬
mation for inclusion in MicroNews one
month before cover date to Managing
Editor, IEEE MICRO, 10662 Los Vaqueros
Circle, Los Alamitos, CA 90720-2578.

Materials capture industry’s imagination

Materials don’t seem to be the subject
to stir the imaginations of most of us.
After all, what can be new and inter¬
esting about such a standard topic?

But a great deal of recent news has
centered on the changes in the materials
used by the electronics industry to pro¬
duce commercial and military devices.
These changes have been so dramatic in
one case at least that we find ourselves
speculating about the materials of the
future.

Time magazine devoted its May 4,
1987, cover to the multitude of effects
that the recent advances in supercon¬
ducting materials will have on our world.
Another interesting material, gallium
arsenide, though no longer brand new to
the market, still inspires electronics
manufacturers who hope to capture its
unusual qualities to produce better
devices. And just now reaching the com¬
mercial market are chips based on dia¬
mond thin film.

These materials are widening our hori¬
zons in more ways than one; here’s a
quick look at some of the research and
commercial plans.

Superconductors
When can we expect to see superfast

computers?
Very, very soon would seem to be the

answer if current research succeeds in be¬
ing applied.

Recent physics advances in high-
temperature superconducting materials
have been making headlines as com¬
panies, government agencies, and univer¬
sities around the world race to experi¬

ment in transmitting electricity with little
loss of energy. Superconducting mater¬
ials lose all resistance to electricity below
a specific temperature, a quality very
likely to produce much faster electronic
devices and thin films.

The larger energy gaps experienced in
these materials occur 10 times more
often than do those in present supercon¬
ducting integrated circuits. This energy
increase means faster devices can be pro¬
duced; it also suggests that the physics of
these materials may be very different
from that of conventional super¬
conductors.

The superconductor race. Discovered
in 1911 and advanced slowly over the
years, superconductivity only recently
became the object of concentrated
research. Four significant achievements
occurred in 1986. Early in the year K.
Alex Mueller and J. Georg Bednorz of
the IBM Zurich Research Laboratory re¬
ported that a ceramic containing lan¬
thanum, barium, copper, and oxygen
showed traces of superconductivity at 30
degrees kelvin. (The Kelvin scale starts at
a temperature of absolute zero, the point
at which all motion of atoms ceases.)
Before this discovery, the best commer¬
cially available superconductors were
cooled to 23.2 K by bathing them in
$5-a-liter liquid helium.

Later that year scientist Shoji Tanaka
at the University of Tokyo reported a
structure for the compound, convincing
others of the reality of the discovery.

Last December physicists Robert J.
Cava of AT&T Bell Laboratories and
Paul C. W. Chu of the University of

Houston discovered superconductivity at
36 and 40.2 K. That same month Z. X.
Zhao at the Chinese Academy of
Sciences reported success at 44 K, and in
February Chu repeated his achievement,
this time at 93 K with yttrium barium
copper oxide. At 77 K it is possible to
use the more-readily available, 10-cent-a-
liter liquid nitrogen to cool materials.

Since February, scientific investigators
at the Argonne National Laboratory
have found at least 13 other ceramics
that are also superconducting at temper¬
atures between 90 and 95 K. Argonne
crystallographers have determined the
structure of the material discovered by
Chu. These scientists precisely located
the oxygen atoms in the crystals with the
help of equipment called the Intense
Pulsed Neutron Source. Information
about the structure should give hints
about other types of materials that might
be superconducting.

While it took scientists 75 years to
raise superconductivity temperatures by
19 degrees, it took only a little over a
year to raise it from 23 to 95 K.

But what’s happened lately? Applica¬
tions of the new superconductors might
include their use as interconnects in semi¬
conductor computers at liquid nitrogen
temperatures. Pattern microstructures
have been obtained and are currently be¬
ing tested at Stanford’s Department of
Applied Physics.

Argonne National Laboratories has
been producing thin films, pellets, and
0.006-inch wires from the new material
and measuring their characteristics. Sci¬
entists at AT&T Bell Laboratories in

86 IEEE MICRO

Murray Hill, New Jersey, reported that
they also have been able to make wires
flexible enough to be wound into coils.
These are key steps in readying the
materials for commercialization.

Just recently, IBM announced a thin-
film superconducting device based on
copper-oxide material. The junction
devices measure one one-hundredth the
thickness of a human hair and are called
Superconducting Quantum Interference
Devices. SQUIDs are chilled by liquid
nitrogen.

An even more spectacular IBM an¬
nouncement concerned its success in in¬
creasing the current-carrying capacity of
superconductors by 100 fold. IBM scien¬
tists grew a one-inch-diameter thin-film
single crystal and cooled it below 77 K.
The crystal carried a current of 100,000
amperes per square centimeter. When the
scientsts cooled the thin film to near ab¬
solute zero, they found that it conducted
5 million A/cm 2.

What’s waiting in the future? Well,
researchers at Wayne State University
recently announced they had seen
evidence of superconductivity at 240 K.
And, Paul Chu foresees superconductivi¬
ty at 300 K (room temperature) eventual¬
ly. And, with IBM’s current-carrying ad¬
vances, we can expect to see widespread
use of these materials in the variety of
applications promised us on the cover of
Time. It seems we’ll all be winners in the
superconductor race.

GaAs
Another material continuously gener¬

ating industry interest because of its per¬
formance advantages is gallium arsenide.
Two agreements have joined Rockwell
International with IBM and Honeywell
with the Defense Advance Research Pro¬
ject Agency in the pursuit of GaAs
technology advances.

The Rockwell International/IBM
agreement calls for cooperative develop¬
ment of advanced gallium arsenide
technology and production techniques.
Their effort will concentrate on develop¬
ing cost-effective optoelectronic and
digital components needed for special
uses in computers and telecommunica¬
tions equipment of the future.

The program involves development
teams at Rockwell’s California facilities
in Newbury Park and Thousand Oaks
and at IBM’s New York facilities in East
Fishkill and Yorktown Heights.

The Honeywell/DARPA contract has

recently produced and demonstrated an
integrated GaAs monolithic receiver chip
at 1-gigabit clock frequencies. The
second-generation chip contains a photo¬
detector and 200 gates on the same GaAs
substrate. It is useful for optical inter¬
connects between computer chips and
from computer to computer.

According to Honeywell, the 2mm x
2mm device is compatible with current
manufacturing processes using direct ion
implantation MESFET technology and
metal organic chemical vapor deposition
for epitaxial growth. The receiver con¬
tains an optical detector, preamplifier
circuit, and 1:4 demultiplexer. It was
designed to decode a 1-gigabit optical
signal input into four parallel 250M-bit
electrical outputs.

Meanwhile, help in production control
has come from the National Bureau of
Standards, which recently developed two
polarized infrared light systems designed
to detect flaws in GaAs semiconductor
materials. Both infrared systems are non¬
destructive methods that wafer manu¬
facturers can use to screen materials
before marketing. One system examines
an entire wafer, while the other employs
a 75- to 600-X microscope to view
isolated wafer portions.

Both systems digitally store images
and use false-color graphics to transmit
infrared intensity, which could indicate
potential problems. Bureau researchers
use the techniques and will assist busi¬
nesses in setting up their own systems.

Diamond thin film
Research and development into DTF-

based chips is progressing to the com¬
mercial market in Japan, according to a
recent International Resource Develop¬
ment report. Shinetsu Chemical Com¬
pany is shipping diamond film-coated
knives for electron microscopy, and Sony
is marketing a loudspeaker tweeter that
uses the material. Sumitomo is expected
to soon be releasing its first DFT-based
chips for applications involving hostile
environmental conditions, such as in
spacecraft or automobile engines.

Diamond film possesses unique
mechanical, electronic, and optical prop-
perties, which have applicability in a
wide range of military and commercial
markets. For example, it seems that DTF
chips will be superior in speed and in
environmental resistance properties to
gallium arsenide.

Despite early research at Case Western
Reserve in the US, it was researchers in
Moscow who in 1977 came up with some
key insights into how to manufacture
synthetic diamond in thin-film form,
using chemical vapor deposition tech¬
niques. Japan, the USSR, and the US
competed to find commercially viable
manufacturing processes for the new
material.

Today, the Japanese are in the lead,
with 1987 shipments expected to total
$17 million. Industry research reports
predict the $400-million level will be
approached by 1993.

Will we soon replace the Fourier Transform

with the Hartley Transform?

A native Australian working at Stan¬
ford University has invented an algo¬
rithm to replace the famous Fourier
Transform and is trying to build a chip
containing the algorithm. Called the
Hartley Transform by inventor Ronald
Bracewell, the new equation cuts in half
the amount of time needed to perform
the same mathematical analysis, uses half
the computer memory, and resides on a
much smaller or lighter chip than those
containing the Fourier equation.

Bracewell first became fascinated with
the Fourier Transform in school ill 1940.
He lectured on Fourier analysis in 1955
and published a book containing
Fourier’s work in 1965. “It has sort of
permeated my whole life, you might

say,” comments Bracewell.
Five years ago Bracewell decided to

write down his thoughts about ways of
possibly improving on Fourier; he based
his idea on the work of Ralph Hartley
done at Bell Laboratories in 1942. The
result was a fast algorithm—developed,
as Bracewell says, with “...some of the
hardest mind grinding I ever did. It took
me months and months, straining my
brain.”

Mindful of the need to patent the
equation, Bracewell is trying to convince
other engineers to build a chip contain¬
ing the algorithm so it will qualify under
the law as having a physical presence.
Taiwan, he has heard, is presently devel¬
oping just such a chip.

June 1987 87

MicroNews

New staff member
Assistant Editor Christine Miller joins

IEEE Micro after assignment with both
IEEE Expert and Design & Test
magazines. She holds a BA in English
from California State College at Fuller¬
ton, has taught English and has authored
some 25 feature magazine articles, in¬
cluding a series on air and water pollu¬
tion. In addition to previous magazine
editorial experience, she is editor of a
financial planning book to be published
this summer.

Her interests in addition to literature
are science, drama, music, and the art of
conversation.

Christine is excited about working
on our staff and welcomes your
communiques.

China’s computer imports

to reach $3.5 billion
The western nations will export 4200

minicomputers and mainframes and
160,000 microcomputers to The People’s
Republic of China in the next five years,
predicts an International Data Group an¬
nouncement. This represents a total im¬
port value of $3.5 billion in computers
and related technology.

IDG, based in Framingham, Massa¬
chusetts, has direct experience doing
business in the P.R.C. It publishes the
biweekly newspaper, China Computer-
world, which is headquartered in Beijing,
has 100,000 paid subscribers, and is said
to be read by two million people.

DEC-compatible
controller guide

Dilog is offering a product guide to its
DEC-compatible peripheral and com¬
munications controllers. The guide has
been designed as an exact-size replica of
a dual-size disk drive controller, com¬
plete with die-cut edge connectors and
embossed ICs. The guide provides infor¬
mation on products for use with Micro-
VAX, PDP-11, LSI- 11, and VAX Uni¬
bus computers as well as listings of all
disk and tape drives that are compatible
with the company’s controllers.

For a free copy write to Dilog Product
Guide, PO Box 6270, Anaheim, CA
92806.

$4-billion market projected for 80386-related products

Computers, software, and peripherals
supporting the Intel 80386 32-bit micro¬
processor should top $4 billion in 1991
and level out to about $3.4 billion by
1993, according to recent research
findings. The increased computing
power of the chip promises higher speed,
multitasking, and large memory access,
advantages avidly sought by users.

Areas expected to be affected by the
32-bit computers are the CAD/CAE and
office automation markets now served

by supermicros, minicomputers, and
mainframes. The report cites the key
issues of standardization, IBM’s market¬
place, and operating systems as crucial in
planning market strategy.

Markets for Products Based on the In¬
tel 80386 Microprocessor: Systems, Soft¬
ware, and Peripherals can be purchased
for $995 from Market Intelligence
Research Company, 4000 Middlefield
Road, Palo Alto, CA 94303;
(415) 856-8200.

Museum offers early PC slides
Collecting unique relics of the personal

computer revolution is becoming easier
for hobbyists and other interested
parties.

Now, a color slide series of PC images
can be obtained from The Computer
Museum in Boston. Twenty images of
the first personal computers, hobbyist
milestones, homebrew and single-board
computers, and early and classic com¬
mercial machines can be purchased for

$20. Volume I of the series, available for
$45, contains 48 slides of early calcu¬
lating devices and computers, supercom¬
puters, logic and memory technologies,
and classic integrated circuits.

Write to The Computer Museum
Store, 300 Congress Street, Boston, MA
02210, to order either volume. Please
add $2.50 to cover postage and handling
charges.

Current literature
National Semiconductor Corporation

is providing customers with a real-time
electronic catalog of RETS military test
specifications for ICs, which can be ac¬
cessed by company sales personnel in the
US. The directory includes a listing of
the electrical tests performed on all
military devices qualified by the com¬
pany and a history of test-program
revisions.

National Semiconductor Corporation,
PO Box 58090, Santa Clara, CA
95052-8090; (408) 721-5407.

A three-tape audiocassette course, “An
Introduction to the MC68020 32-Bit
Microprocessor,” discusses the major
enhancements of the Motorola device
over the original MC68000. Course
notes, user’s manual, and related
literature support the self-paced tapes.

Motorola Semiconductor Products
Sector Technical Operations, PO Box
52073, Phoenix, AZ 85072; (800)
521-6274; $95.

The design and test of a 16-bit com¬

puter system around the Motorola
MC68000 is the aim of this 592-page text
from Bucknell University’s College of
Engineering. Author Alan D. Wilcox in¬
tegrates the principles of engineering
with practical hands-on experience.

Prentice-Hall, Englewood Cliffs, NJ
07632; (800) 526-0485; $42.95.

Memory Discontinued Devices dis¬
plays specifications, logic drawings, and
pinout information for 15,500 memory
ICs previously available from 92 manu¬
facturers but no longer in production.
Devices covered include RAMs, ROMs,
PROMs, EPROMs, EEPROMs, pro¬
grammable logic ICs, code converters,
European- and Asian-character gener¬
ators, and bubble memories.

D.A.T.A., Inc., 9889 Willow Creek
Road, San Diego, CA 92126; (800)
854-7030; in California, (800) 421-0159;
$65.

Infonet, Inc., is publishing the Japan
Computer Index ‘87, an English-lan-

88 IEEE MICRO

guage hardware/software directory of
the Japanese computer industry. Over
5000 company listings, analyses, reviews,
and projections appear.

Infonet, Inc., 5F The 7th Industry
Bldg., 1-20-14 Jinnan, Shibuya-ku,
Tokyo, Japan 150; (03) 770-4483; soft¬
ware, US$280; hardware, US$215.

Information about IEEE-488 bus in¬
terface (GPIB) products for IBM PCs
and compatibles, Apple, AT&T, Tandy,
Texas Instruments, Apollo, Sun, Com¬
paq, Motorola, and NCR appears in the
24-page 1987 catalog published by Na¬
tional Instruments.

National Instruments, 12109 Technol¬
ogy Boulevard, Austin, TX 78727-6204;
(800) 531-4742; in Texas (800)
IEEE-488; free.

The biweekly Superconductors Update
is a printed current-awareness subscrip¬
tion service containing abstracts of
superconductor research and biblio¬
graphic citations from patent documents,
journals, and other publicly available
literature. The service includes a 650-
page book, Superconductors Update,
January-March 1987, and biweekly
updates.

MicroLaw
Continued from p. 82

recommended interface. In this case, it
should be a Computer Society project to
do the research needed to show either (1)
that someone else did it earlier than the
claimant of alleged previous rights, or (2)
that functional considerations about a
proper interface make the technique
functional and utilitarian, and thus an
idea rather than an expression.

If the software publishers had any
common sense, they would join us in
devising the standard. As Dan Bricklin, a
cocreator of VisiCalc, warned at a recent
Massachusetts Computer Software Coun¬
cil roundtable: “A lot of companies are
going to rise and fall because some
lawyer will be able to pull off a court
trick. In this climate, if I were an in¬
vestor, I’d be afraid to invest in any soft¬
ware company.”

Or, as Cullinet Software’s former
president John Cullinane put it: “It’s

STN International, 2540 Olentangy
River Road, Columbus, Ohio 43202;
$750.

Analogic Corporation is offering its
Data Conversion Systems Digest without
charge to chief engineers and system
designers. The compendium supplies
practical tutorial and reference material
that addresses typical design problems
encountered by engineers. Topics include
A/D conversion architectures, system
applications, and ground loops and in¬
terference.

Analogic Sales Administration Office,
8 Centennial Drive, M/S 5E7, Peabody,
MA 01961; (617) 246-0300.

Three recent books from Meckler
Publishing offer guides to CD ROMs.
Publishing with CD-ROM written by
Patti Myers explores compact disc op¬
tical storage technologies for providers
of publishing services ($19.95). CD-
ROM and Optica! Publishing Systems by
Tony Hendley assesses the impact of op¬
tical read-only memory systems on the
information industry and compares them
with traditional publishing systems
($39.50). The Guide to CD-ROMs in
Print is an annual reference book using

going to have a deadening effect in
regard to innovation. Because of the
legal uncertainty about look and feel, the
issue tends to inhibit dynamic, small,
underfunded organizations from devel¬
oping something better. These days, it’s
very important that you retain very good
counsel.” He has several good points,
there. I do not want to knock retaining
very good counsel—that is a first-class,
highly recommended idea. But it would
be considerably cheaper just to devise a
good industry-standard interface and
adhere to it as insurance and immuniza¬
tion against copyright infringement
litigation over your interface.

Then we could concentrate on liti¬
gating more important and profound
copyright issues, such as those past
favorites—who really should own the ex¬
clusive rights to the desktop metaphor
and the trashcan icon or whether copy-

the books-in-print concept to list cur¬
rently available CD ROMs and other
digitally encoded optical medium prod¬
ucts ($29.95).

Meckler Publishing, 11 Ferry Lane
West, Westport, CT 06880; (203)
226-6967.

A new monthly publication edited by
Charles Rolander, Electronics Industry
Outlook, tracks business trends in the
electronics industry. The report features
analyses and forecasts using a top-down
approach for continuity and computer¬
generated charts and graphs for
readability.

HTE Management Partners, 4575
Scotts Valley Drive, Suite 105, Scotts
Valley, CA 95066; (408) 438-2395;price
not stated.

Reader Interest Survey

Indicate your interest in this department

by circling the appropriate number on the

Reader Interest Card.

High 183 Medium 184 Low 185

right should protect the logic blown into
a programmed field-programmable device.

In a future issue I will fill you in on a
new wrinkle in audiovisual work copy¬
rights—how copyright protects the
gestures of mechanical toys like Teddy
Ruxpin, and how that theory can be ap¬
plied to protect printed circuit boards for
a mechanical parrot vending machine.

Reader Interest Survey

Indicate your interest in this department

by circling the appropriate number on the

Reader Interest Card.

High 171 Medium 172 Low 173

June 1987 89

Department

New Products

Marlin H. Mickle
University of Pittsburgh

Scanning input device aids pen plotters

With the Scan-CAD accessory, Houston Instrument DMP-50 series plotters can be
converted into an automatic digitizer. As a drawing is scanned, the hard-copy im¬
age is converted by the scanning software into a raster data file, which can be used
as is or read by other software for further conversion into vector data.

Send announcements of new
microcomputer and microprocessor
products, and products for review,
to Managing Editor, IEEE Micro,
10662 Los Vaguer os Circle,
Los Alamitos, CA 90720-2578.

Dial-back system prevents

unauthorized access
A security unit from Britain’s GEC

Telecommunications Ltd. prevents
unauthorized access to a computer over
standard PTT lines—even when an in¬
truder enters a legitimate user name and
password—by discontinuing the connec¬
tion and redialing the caller.

When a call is received, the DSU 0496
dial-back security unit responds with a
welcome message, prompts for a user
name and password, and breaks the con¬
nection. The name and password given
by the caller are then checked against an
authorized list stored in memory; if
found to be legitimate, the caller is con¬
tacted by the unit on a telephone number
that has been approved for that par¬
ticular user. Computer connection is
limited to programmed telephone
numbers.

Managers can enter names, passwords,
and telephone numbers for 200 users by
accessing the system’s editor program
with a security lock and key. Editors also
control all line speeds and characteristics,
which can be set independently for each
modem and computer connection. The
unit converts speed and format between
the modem and computer.

A printer can be connected to the unit
to provide user access times and call
durations for call charging and for log¬
ging unauthorized access attempts. One
unit simultaneously secures four dial-in
access ports. Modems up to 9600 bps are
acceptable.

Contact GEC Telecommunications
Ltd. for pricing.

Reader Service Number 30

Houston Instrument has announced a
scanning input device as an option for its
DMP-50 series pen plotters. The Scan-
CAD plotter accessory features a 200-dpi
scan head that detects lines of 0.007 inch
and automatically scans detailed ar¬
chitectural, engineering, or other CAD
drawings from paper, vellum, acetate
film, or blueline stock.

According to the company, when
using an IBM PC AT with a drawing of
medium complexity and a scan velocity
of 2 ips, Scan-CAD can input a D-size

drawing in 12 minutes and an E-size
drawing in 24 minutes. Scan-CAD in¬
cludes a snap-on scan head, cable and
cable support assembly, scanner con¬
troller expansion card, scanning soft¬
ware, and operation manual. The unit
requires an IBM PC or AT with 10M-
byte or larger hard disk and 640K
memory and a Houston Instrument
DMP-50 series drafting plotter.

Priced at $2995, the plotter option is
expected to be available in December.

Reader Service Number 31

90 IEEE MICRO

VAX-version DSP adapted for IBM PCs
Signal Technology Inc. has announced

that Version 6.0 of its Interactive Labo¬
ratory System allows IBM PC users to
access the range of ILS programs
formerly only available to VAX/VMS
users. The PC digital signal/speech pro¬
cessor includes a menu-based user inter¬
face, color graphics, and additional data
acquisition support. Speech processing
based on the LPC model provides pitch
detection, parameter display and editing,

formant tracking, speech synthesis, and
pattern classification.

Version 6.0 supports data acquisition
for hardware from Data Translation,
IBM (DACA), Analog Devices, and
Metrabyte. In addition, it has built-in
conversion facilities for input-output of
binary or ASCII data.

The price for Signal Technology’s
Version 6.0 is $2495.

Reader Service Number 33

C compiler supports Intel 8096
Intel Corporation’s C-96 compiler

supports its 8096 family of 16-bit
microcontrollers. The compiler runs on
IBM PC XT, AT, or compatible per¬
sonal computers containing DOS 3.0.
The single-pass compiler eliminates in¬
termediate assembly files and reduces
operator involvement and compilation
time.

Object modules produced by C-96 can
be linked with PL/M-96 and ASM-96
object modules. This allows design teams
to choose different languages for dif¬
ferent software tasks and program in the

Data entry package supports
Harris 9300

Harris Corporation National Accounts
Division has announced that the RODE/
PC data-entry software package from
DPX, Inc., is available for the Harris
9300 network communications system.
The software permits high-volume data
entry on personal computer workstations
networked into the Harris 9300.

RODE/PC is designed for keypunch,
key-to-disk, and source data entry ap¬
plications. Features include data valida¬
tion at character, field, and screen levels;
automatic reformatting; conditional pro¬
cessing; on-line help functions; user
exits; and user-defined formatting. The
RODE/PC software also supports super¬
visory operator functions. Host interface
is provided by the 9300 RJE, 3270, and
asynchronous communication gateways.

Single-user packages of the RODE/PC
software for the Harris 9300 are priced at
$595 each. The multiuser version, starting
at $2125, accommodates up to 16 users.

Reader Service Number 32

family
most efficient and appropriate language
for each task.

C-96 generates the “hooks” necessary
to allow engineers using the VLSiCE-96
in-circuit emulator and iSBE-96 single¬
board emulator to take full advantage of
the company’s symbolic debugging and
source code display capability during
hardware/software integration.

The C-96 compiler is available for
$750 in single quantities. Multiple-copy
discounts are available.

Reader Service Number 34

VMEbus adapter supports
300M-byte throughput

BBN Advanced Computers has intro¬
duced the Butterfly VMEbus Adapter to
provide up to 300 Mbytes/s of I/O
bandwidth. The adapter allows the But¬
terfly system to expand to large configu¬
rations and maintain high throughput
for array processors, graphics systems,
and high-speed disk interfaces.

The interconnection network provides
all processors with equal access to all
memory in the system. Data moves to
and from the VMEbus without going
through intermediate processor nodes.
The adapter operates with a 32-bit ad¬
dress and data VMEbus and consists of
two boards driven by a Motorola 68020
microprocessor. One board contains a
bus interface and plugs into the back¬
plane; the other board, containing the
microprocessor, interfaces to two ports
on the Butterfly switch and occupies a
slot in the card cage.

The VME Adapter is available from
BBN Advanced Computers for $15,000.

Reader Service Number 35

DSP card comes with 6

application packages
The DSP-16 from Ariel Corporation is

a data acquistion/signal processor plug¬
in card for the IBM PC, XT, or AT,
which includes a data buffer capable of
storing 21 seconds of audio at maximum
bandwidth. Bundled with the DSP-16
hardware are six software application
packages called the PC Sampler.

The signal acquisition, synthesis, and
processing system combines two channels
of 50-kHz sample rate, 16-bit-resolution
input/output conversion, the data buf¬
fer, and the TMS32020 DSP micropro¬
cessor. The 5-MIPS throughput of the
TMS32020 makes possible complex pro¬
cessing and analysis of the acquired
signal in real time, freeing the host com¬
puter to set up and control the DSP-16
program, display the processed signal,
and store and retrieve data. A separate
TMS32020-to-host interface port permits
program modification and data transfer
on the fly.

The PC Sampler software package in¬
cludes a program development system
and five software application programs;
data acquisition, digital audio effects,
storage oscilloscope, audio loop editor,
and waveform synthesizer. The Program
Development System includes driver
routine, a TMS32020 assembler, and
debug facilities.

List price for quantities one to nine of
Ariel Corporation’s DSP-16 plug-in card
is $2495. OEM quantity discounts are
available.

Reader Service Number 36

Package converts raster file
to vector data

Microtek Lab is offering its CADmate
scanner-to-CAD conversion software for
the IBM PC. CADmate converts scanned
(raster or bit-mapped) images to vector
(line-based) data that is compatible with
AutoCAD, VersaCAD, and other PC-
based CADD software.

CADmate accepts A-size engineering,
architectural, and other drawings from
the company’s MS-300A scanner at 200
or 300 dpi. It also accepts A- to E-size
drawings scanned from the 200-dpi
Houston Instrument Scan-CAD plotter
accessory.

Microtek Lab prices CADmate at
$995.

Reader Service Number 37

June 1987 91

New Products

AI software repairs PC

hard disks
The Disk Technician automated ar¬

tificial intelligence system prevents,
detects, repairs, and recovers hard-disk
media failures before data can be lost on
IBM PCs and compatibles. According to
Prime Solutions Inc., the system takes 60
seconds of daily hands-on operator time
to use.

Disk Technician resides on a 514-inch
diskette and works on hard and floppy
disks. The program performs automatic
daily, weekly, and monthly hard-disk sys¬
tem testing and repairing of individual
bytes on the disk, occupied or not, for
reading, writing, track alignment, and
magnetic retentivity. All unsafe soft er¬
rors are either repaired or blocked.

An early warning detection system in
Disk Technician removes unrepairable
marginal areas from use. The AI calibra¬
tion and alignment diskette automatical¬
ly adjusts Disk Technician to the in¬
dividual system being checked and
features a history and analysis function
that “learns” its host system. Pressing P
or Enter/Return produces a printed or
screen report of test results.

An added feature is SafePark, a
memory-resident program that moves
the disk head to a safe zone when there
has been no activity for seven seconds.
In the safe zone data is protected against
loss due to power failure or power spikes
and fluctuations.

Contact Prime Solutions Inc. for
pricing.

Reader Service Number 38

The MicroSpeed FastTrap three-dimensional I/O device has a large tracking surface
considered to be very stable in high-resolution graphics applications. The pointing
device uses a trackball for x,y motion control and a fingerwheel to control the
third, or z> axis. FastTrap has a suggested retail price of $149; delivery is 30 to 60
days ARO.

Reader Service Number 39

Motorola accepts orders for DSP56200 FIR chip

Motorola’s Digital Signal Processor
Operations has announced the avail¬
ability of its off-the-shelf DSP56200
finite impulse response filter chip for
sampling. Fabricated in 1.5-micrometer
CMOS technology, the DSP56200
features the least mean square adapta¬
tion algorithm, which is implemented in
silicon and eliminates the need for ad¬
ditional programming.

The FIR chip supports applications in
general digital filtering and data acqui¬
sition systems for DSP products; the

company expects it to be particularly
useful in communications products re¬
quiring adaptive echo cancelling or linear
phase digital filtering.

The DSP56200 FIR contains two
RAM arrays and a multiply/accumu¬
lator. The RAM arrays consist of a
16-bit-by-256 location data RAM and a
24-bit-by-256 location coefficient RAM.
A 40-bit product results from the 16-bit-
by-24-bit multiplier/accumulator.

An 8-bit data bus and three control
lines provide an interface to fast and

slow general-purpose processors. The
DSP56200 operates in dual-channel FIR
filter mode, single-channel FIR filter
mode, or single-channel adaptive filter
mode. It can be cascaded in both the
single-channel FIR and adaptive filter
modes. In standby mode the chip retains
data and coefficient memory and draws
less than 1mA of power.

The 28-pin DIP device is priced at
$100. Production quantities are expected
to be available fall 1987.

Reader Service Number 40

92 IEEE MICRO

AT&T announces
WE DSP 16 chip

AT&T’s digital signal processor, the
WE DSP 16, multiplies and adds instruc¬
tions simultaneously at a rate of either 75
or 55 nanoseconds, or about 13.3 or 18.2
million instructions per second.

The WE DSP 16 is implemented in
1.0-micrometer double CMOS and
dissipates less than 0.33 watts of power.
The 16-bit IC has an on-board instruc¬
tion cache that executes a set of up to 15
instructions 127 times with no looping
overhead. A parallel pipelined architec¬
ture permits different operations to be
executed by one DSP 16 simultaneously.

Samples of the AT&T WE DSP16 in
both speeds are currently available; full
production is expected by fall 1987.

Contact AT&T for pricing.
Reader Service Number 41

TI adds to TMS320 DSP family
Texas Instruments has developed its

third generation of TMS320 digital signal
processors, the TMS320C30. With a
computational rate designed to be
greater than 33 million floating-point
operations per second, the chip can be
used in real-time DSP and computation¬
intensive applications. Its performance
level is gained through internal paral¬
lelism, large on-chip memories, and con¬
current DMA.

Key features of the TMS320C30 in¬
clude a 60-ns, single-cycle execution
time; two lK-by-32-bit, single-cycle,
dual-access RAM blocks; one 4K-by-32-
bit single-cycle, dual-access ROM block;
a 64-by-32-bit instruction cache; 32-bit
instruction and data words and 24-bit
addresses; a 32/40-bit floating-point and
integer multiplier; and a 32/40-bit
floating-point, integer, and logical ALU.

Additionally, the DSP offers eight ex¬
tended precision registers, two 32-bit
address-generator ALUs with eight aux¬
iliary registers, and an on-chip DMA
controller for concurrent I/O and CPU
operation.

The 1-micrometer CMOS chip is
upward-compatible with previous ver¬
sions of the TMS320 family. Application
support and quality development tools
available include a full Kernighan and
Ritchie C compiler, which supports in¬
line assembly language code.

TI expects sample quantities to be
available first quarter 1988 in two ver¬
sions. A 144-pin microprocessor version
is unpriced as yet; an 84-pin microcom¬
puter will most likely be priced from $40
to $50 each in OEM quantities. Produc¬
tion is projected for fourth quarter 1988.

Reader Service Number 43

SRAM performs at 15-ns speeds

Organized as 256 words by 4 bits, the VLSI Technology VT7C122 SRAM is en¬

closed in 22-pin plastic DIP; it is also available in 25-ns and 35-ns versions.

The VT7C122 lK-bit static RAM from
the Application Specific Memory Prod¬
ucts Division of VLSI Technology offers
access and cycle times of 15 nanosec¬
onds. The CMOS memory chip is de¬
signed for applications of cache mem¬

ories, writeable control stores, and data
buffers.

The VT7C122 SRAM is available in
sample quantities of 1000 for $10.44
each. Production-level availability is
expected by fall 1987.

Reader Service Number 42

Image capture, graphics
boards announced

Vutek Systems has introduced the
Freeze Frame Image Capture and Super
Deluxe EGA boards. Freeze Frame
digitizes video images in real time from
standard NTSC sources such as a CCTV
camera, VCR, or videodisc player and
combines the image with text for viewing
on a monitor and subsequent storage on
a disk. The combined image can be
printed on a dot matrix or laser printer.
Freeze Frame works with standard EGA
or CGA boards in IBM PCs or com¬
patibles.

The Deluxe EGA board allows users
to draw 16 colors from a palette of 64
and supports features of the IBM EGA,
CGA, PGA, DEGA, and MDA
adapters. It also provides keyboard
switching when changing from EGA to
CGA modes.

Freeze Frame prices start at $1379,
and Deluxe EGA retails for $559.

Reader Service Number 44

Reader Interest Survey

Indicate your interest in this department
by circling the appropriate number on the
Reader Interest Card.

Fligh 180 Medium 181 Low 182

June 1987 93

Department

Product Summary

Marlin H. Mickle
University of Pittsburgh

For more information, circle the appropriate
Reader Service Number on the Reader
Service Card at the back of the magazine.

Manufacturer Model Comments Rs No.

Chips/Components

Accutek Micro-

circuit Corp.

Analogic Corp.

Integrated Device
Technology

Boards

Levco

Software

University of
Southern California

Peripherals

Commodore
Business
Machines

DRAM modules Family of 6:1-density dynamic RAM modules comes in 18-pin DIP, 22-pin 60
SIP, and 30-pin and 40-pin SIMM configurations, which comply to JEDEC
pinout standards. Each device uses 1M, 256K, or 64K chips packaged in
LCCs or PLCCs and surface mounted to a multilayer substrate. Prices not

stated.

ADAM-826 Eurocard-packaged analog-to-digital converter is available in two configura- 61
Eurocard tions, the basic A/D converter with 1.5-ms conversion time and another

with sample and hold amplifier and speeds of ±0.0015 percent in less than

800 ns for a full 20V step. Price not stated.

IDT75C19/29 CMOS 9-bit, 125-MHz video digital-to-analog converter optimized for ar- 62

DAC converters tificial vision applications drives a 75-ohm standard load to video levels with
1280 x 1024 resolution. IDT75C19 features ECL-compatible inputs, and
the IDT75C29 has TTL-compatibie inputs. Packaging includes 24-pin
hermetic DIPs; 28-pin LCCs; and 24-pin, 0.300-inch plastic Thindips.

$38.50 for commercial-grade Cerdip in 100-up quantities.

Prodigy SE Macintosh SE performance-enhancement board plugs into the SE-Bus slot 63

to change the computer into a portable workstation capable of running ap¬
plications 100 times faster. The 16-MHz, 32-bit 68020 board features
lM-byte RAM; a built-in, nonvolatile RAM disk; and two on-board expan¬
sion ports for adding high-speed memory and peripheral connections.

$1995 each.

Scriptwriter IBM PC software permits an author to create educational software with tools 64
such as graphics, text, and font editors and the IQ programming language.
Users create a set of screens and program the interactions between the user
and the system. Requires a 512K XT or AT; sound and animation support
is available. Basic system, $40; laser disk monitor support, $20; program

library, $20.

Genlock 1300 Electronic outboard device allows users to superimpose Amiga graphics, 65
animation, stereo sound, and titles over videotaped images generated by
video equipment. The 2.5-lb., stand-alone genlocking device synchronizes
external video signals for display on a monitor or television set or for
videotape recording. $295 each.

94 IEEE MICRO

Department

Calendar
Conferences sponsored or cosponsored by
the Computer Society of the IEEE are indi¬
cated by the society’s logo. Submit informa¬
tion eight weeks before cover date to Calen¬
dar, IEEE Micro, 10662 Los Vaqueros Circle,
Los Alamitos, CA 90720-2578.

July

ACM SIGGraph 87, July 27-31, Ana¬
heim, California. Contact SIGGraph 87

Conference Management, Smith Bucklin and
Associates, Inc., Ill E. Wacker Dr., Suite
600, Chicago, IL 60601; (312) 644-6610.

14th Annual Conference on Computer
Graphics and Interactive Techniques (ACM),
July 27-31, Anaheim, California. Contact
SIGGraph 87 Conference Management, Smith
Bucklin and Associates, Inc., Suite 600,
Chicago, IL 60601; (312) 644-6610.

August

Eurographics 87 (ACM, IFIP), August 24-28,
Amsterdam. Contact Secretariat Eurographics
87, c/o Organisatie Bureau Amsterdam,
Europaplein 12, 1078 GZ Amsterdam, The
Netherlands; phone 31 (20) 44-08-07.

1987 Annual International Test Con¬
ference, August 30-September 4, Wash¬

ington, DC. Contact Doris Thomas, PO Box
264, Mount Freedom, NJ 07970; (201)
895-5260.

September

Euromicro 87, 13th Symposium on Micro¬
processing and Microprogramming;
Microcomputers—Usage, Methods, and
Structures, September 14-17, Portsmouth,
England. Contact Chiquita Snippe-Marlisa,
p/a TH Twente, gebouw TW/RC, Rm.
A227, PO Box 217, 7500 AE Enschede, The
Netherlands; phone 31 (53) 33-87-99.

1CCC-ISDN 87, Evolving to Integrated Ser¬
vices Digital Networks in North America,
September 15-17, Dallas. Contact Caroline
Stites, Bell Atlantic, 1310 N. Court House
Rd., tenth floor, Arlington, VA 22201; (703)
974-5453.

Midcon 87 (IEEE), September 15-17, Rose-
mont, Illinois. Contact Alexes Razevich, Elec¬
tronic Conventions Management, 8110 Air¬
port Blvd., Los Angeles, CA 90045; (213)
772-2965 or (800) 421-6816.

1987 Design Automation Conference
(ASME), September 27-30, Boston. Contact
S.S. Rao, School of Mechanical Engineering,
Purdue University, West Lafayette, IN 47907;
(317) 494-5699.

Fall National Design Engineering Show, Cor¬
porate Electronic Publishing Systems, Sep¬
tember 29-October 1, New York. Contact
Show Manager, Fall National Design Engi¬
neering Show, 999 Summer St., Stamford,
CT 06905; (203) 964-0000.

October

12th Conference on Local Computer
Networks, October 5-7, Minneapolis,

Minnesota. Contact Stephane Johnson, Start,
Inc., 10301 Toledo Ave. South, Bloomington,
MN 55437; (612) 831-2122.

ICCD-87, IEEE International Con¬
ference on Computer Design: VLSI in

Computers and Processors, October 5-8, Rye
Brook, New York. Contact Prathima
Agrawal, AT&T Bell Laboratories, 600
Mountain Ave., Rm. 3D-480, Murray Hill,
NJ 07974; (201) 582- 6943.

Compsac 87 (Computer Society, IPSJ),
October 5-9, Tokyo. Contact Tosiyasu

L. Kunii, c/o Business Center for Academic
Societies Japan, Yamazaki Bldg. 4F, 2-40-14,
Hongo, Bunkyo-ku, Tokyo 113, Japan;
phone 81 (3) 817-5831, or Albert K. Hawkes,
Sargent & Lundy, Engineering Consultants,
55 E. Monroe, Chicago, IL 60603; (312)
269-3640, or Stephen S. Yau, Northwestern
University, Dept, of Electrical Engineering
and Computer Science, Evanston, IL 60201;
(312) 491-3641.

7th Annual Symposium on Small Com¬
puters in the Arts, October 8-11, Phila¬

delphia. Contact Maurice Herlihy, Dept, of
Computer Science, Carnegie Mellon Univer¬
sity, Pittsburgh, PA 15213; (412) 268-2584.

FJCC-87, Fall Joint Computer Con¬
ference (Computer Society, ACM), Oc¬

tober 25-29, Dallas. Contact Debra Anthony,
Texas Instruments, 6500 Chase Oaks Blvd.,
PO Box 86905, MS 8419, Plano, TX 75086;
(214)575-2151.

FOC/LAN 87, 11th International Fiber Optic
Communications and Local Area Networks
Exposition, October 26-30, Anaheim, CA.
Contact Information Gatekeepers, Inc., 214
Harvard Ave., Boston, MA 02134; (617)
232-3111.

Government Microcircuits Applications Con¬
ference, October 27-29, Orlando, Florida.
Contact Frank J. Rehm, RADX Griffiss Air
Force Base; (315) 330-7781.

November

ICCAD-87, IEEE International Con¬
ference on Computer-Aided Design,

November 9-12, Santa Clara, California.
Contact Basant Chawla, AT&T Bell Labo¬
ratories, 1247 S. Cedar Crest Blvd., Allen¬
town, PA 18103; (215) 770-3484.

December

Micro 20, 20th Annual Workshop on Micro¬
programming (ACM), December 1-4, Col¬
orado Springs, Colorado. Contact Gearold R.
Johnson, Center for Computer-Assisted Engi¬
neering, Colorado State University, Fort Col¬
lins, CO 80523; (303) 491-5543.

ISELDECS-87, International Symposium on
Electronic Devices, Circuits, and Systems,
December 16-18, Kharagpur, India. Contact
N.B. Chakrabarti, Dept, of Electronics and
Electrical Comm. Eng., Indian Institute of
Technology, Kharagpur 721302, WB, India,
or Vishwani Agrawal, (201) 582-4349.

January 1988

Annual IEEE Design Automation
Workshop, January 13-15, Apache

Junction, Arizona. Contact Walling Cyre,
Control Data, HQM 173, Box 1249, Min¬
neapolis, MN 55440; (612) 853-2692.

February 1988

ADEE 88, Automated Design and Engineer¬
ing for Electronics, February 7-9, New
Orleans. Contact ADEE West, Cahners Ex¬
position Group, 1350 East Touhy Ave., PO
Box 5060, Des Plaines, IL 60017-5060; (312)
299-9311.

Nepcon West 88, February 23-25, Anaheim,
Calif. Contact Jerry Carter, Cahners Exposi¬
tion Group, 1350 East Touhy Ave., PO Box
5060, Des Plaines, IL 60017-5060; (312)
299-9311.

June 1987 95

Advertiser Index Product Index

Omega Engineering Inc.Cover IV

BUSCON/87-UK.2

FOR DISPLAY ADVERTISING INFORMATION CONTACT
Southern California and Mountain States: Richard C. Faust Company, 24050 Madison
Street, Suite 100, Torrance, CA 90505; (213) 373-9604.
Northern California and Pacific Northwest: Don Farris Company, 161 W. 25th Ave.,
#102B, San Mateo, CA 94403; (415) 349-2222.
Jack Vance, P.O. Box 3205, Saratoga, CA 95070; (408) 741-0354.
East Coast: Hart Associates, Inc., P.O. Box 339, 42 Lake Blvd., Matawan, NJ 07747;
(201) 583-8500.
New England: Arpin Associates, P.O. Box 227, 51 Colchester, Weston, MA02193; (617)

899-5613.
George Watts, III, 4 Conifer Dr., Wilbraham, MA 01095; (413) 596-4747.
Midwest: Thomas Knorr, Knorr MicroMedia, Inc. 333 North Michigan Ave. Chicago, 1L

60601; (312) 726-2633.
Southwest: The House Company, 3000 Weslayan, Suite 345, Houston, TX 77027; (713)

622-2868.
Southeast/Telemarketing: Kay Young and Assoc., 22 Pebblewood, Irvine, CA 92714;
(714) 551-4924.
Europe: Heinz J. Gdrgens, Parkstrasse 8a, D-4054Nettetal 1-Hinsbeck (F.R.G.); (02153)

8 99 88.

Advertising Director: Dawn Peck, IEEE MICRO, 10662 Los Vaqueros Circle, Los
Alamitos, CA 90720; (714) 821-3240, 821-8380.

For production information, conference or classified advertising contact Heidi Rex or
Marian Tibayan. IEEE MICRO, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720,

(714) 821-8380.

BOARDS RS# Page#

Image/graphics
Performance-

44 93

enhancement 63 94

CHIPS
Memory 42 93
RAM module 60 94

Response filter
Signal

40 92

processor 33,36,41,43 91,92

COMPONENTS
Adapter 35 91
Converter 61,62 94

CONFERENCES & COURSES
Bus/board — 2

I/O RELATED EQUIPMENT
Genlocking

device 65 94

Pointing device 39 92

Scanning device 31 90

PUBLISHERS
Handbooks 1 Cover IV

SOFTWARE
Conversion 37 91

Data entry 32 91

Editing 64 94

SYSTEMS
Automated AI 38 92
Compiler 34 91

Security 30 90

Moving? Want to subscribe?

□Address changes:
Please notify us 4
weeks in advance

□New subscribers;
□1 year: $17 (IEEE

society members)

Mem. No.

Name (please print)

Address

□1 year: $25 (NSPE,
SCS, IPSJ, IECEJ, or city “ State ZIP
other society members)

ATTACH • This address change notice will apply to all IEEE publications to
-Organization LflBEL whjc|, you su|}scribe.

HERE • List new address above.
am o.(i any) . yOU |,ave a question about your subscription, place label here and

□Check enclosed cliP,his ,orm ,0 Vourletter
□Send information

Mail to:
IEEE Micro, Circulation Dept. 10662 Los Vaqueros Cir., Los Alamitos, CA 90720-2578

74J<wcle/it*ty

udie/ie fo yet

i44*ieA?

MICRO;

Contact IEEE Computer Society,
PO Box 80452, World way Postal
Center, Los Angeles, CA 90080

for 1984 and 1985 issues of
IEEE Micro.

Special Offer
$3.00 per copy/

$15.00 minimum order

96 IEEE MICRO

SU
BS

CR
IP

TI
ON

 C
A

RD

RE
AD

ER
 S

ER
VI

CE
 C

A
RD

RE
AD

ER
 S

ER
VI

CE
 C

A
RD

 MICRQ/
June 1987 issue
(card void after December 1987)

Name___

Title_

Company_

Address _

City-State ZIP_

Country- Phone |)_

Please send
(Circle those you want):

201 Publications catalog

202 Membership information

203 Student membership information

204 IEEE Micro subscription information

MiCRQ/
June 1987 issue
(card void after December 1987)

Name_

Title ___

Company_

Address_

City-State ZIP_

Country- Phone ()_

Please send
(Circle those you want):

201 Publications catalog

202 Membership information

203 Student membership information

204 IEEE Micro subscription information

Reader interest
(Circle what you liked,

add comments on the back)

Readers,
Indicate your interest in
articles and departments by
circling the appropriate
number (shown on the last
page of articles/departments)
in the shaded section of this
card under Product Inquiries.

Product inquiries
(circle the numbers for products and advertisers
you want more information on)

1 21 41 61 81 101 121 141 161 181
2 22 42 62 82 102 122 142 162 182
3 23 43 63 83 103 123 143 163 183
4 24 44 64 84 104 124 144 164 184
5 25 45 65 85 105 125 145 165 185
6 26 46 66 86 106 126 146 166 186
7 27 47 67 87 107 127 147 167 187
8 28 48 68 88 108 128 148 168 188
9 29 49 69 89 109 129 149 169 189
10 30 50 70 90 110 130 150 170 190
11 31 51 71 91 111 131 151 171 190
12 32 52 72 92 112 132 152 172 192
13 33 53 73 93 113 133 153 173 193
14 34 54 74 94 114 134 154 174 194
IS 35 55 75 95 115 135 155 175 195
16 36 56 76 96 116 136 156 176 196
17 37 57 77 97 117 137 157 177 197
18 38 58 78 98 118 138 158 178 198
19 39 59 79 99 119 139 159 179 199
20 40 60 80 100 120 140 160 180 200

Reader interest
(Circle what you liked,

add comments on the back)

Readers,
Indicate your interest in
articles and departments by
circling the appropriate
number (shown on the last
page of articles/departments)
in the shaded section of this
card under Product Inquiries.

Product inquiries 2
(circle the numbers for products and advertisers

you want more information on)

1 21 41 61 81 101 121 141 161 181
2 22 42 62 82 102 122 142 162 182
3 23 43 63 83 103 123 143 163 183
4 24 44 64 84 104 124 144 164 184
5 25 45 65 85 105 125 145 165 185
6 26 46 66 86 106 126 146 166 186
7 27 47 67 87 107 127 147 167 187
8 28 48 68 88 108 128 148 168 188
9 29 49 69 89 109 129 149 169 189
10 30 50 70 90 110 130 150 170 190
11 31 51 71 91 111 131 151 171 190
12 32 52 72 92 112 132 152 172 192
13 33 53 73 93 113 133 153 173 193
14 34 54 74 94 114 134 154 174 194
15 35 55 75 95 115 135 155 175 195
16 36 56 76 96 116 136 156 176 196
17 37 57 77 97 117 137 157 177 197
18 38 58 78 98 118 138 158 178 198
19 39 59 79 99 119 139 159 179 199
20 40 60 80 100 120 140 160 180 200

4

SUBSCRIBE TO IEEE MICRO

EH YES, sign me up! EH YES, sign me up!
If you are a member of the Computer Society or any other IEEE society,
pay the member rate of only $17 for a year’s subscription (6 issues).
Subscriptions are annualized with membership. For orders submitted
March through August, please pay half the given full-year fee for a half-
year’s subscription.

If you are a member of ACM, NSPE, ACS, IEE (UK), SCS, IPSJ,
IECEJ, or any other technical society, pay the sister society rate of only
$25 for a year’s subscription (6 issues).

Society: IEEE membership no: Society: Mem. no. (if any):

Full Signature Date

Name

Street

City

State/Country ZIP/Postal Code

□ Payment enclosed

Q Charge to □ Visa □ MasterCard Q AmEx

□□□□□□□□□□□□□□CD
Charge Card Number

Mo. Yr. Charge orders also taken by phone:

□ □ □□ (714)821-8380 8:00 a.m. to 5:00 p.m. Pacific time

Exp. Date Circulation Dept.

10662 Los Vaqueros Cir.

M687 Los Ala m it os, CA 90720

Editorial comments

I liked:

PO box address for
reader service cards only

PLACE

STAMP

HERE

I disliked:

I would like to see:

For reader service inquiries, use other side

MICRQ;
Reader Service Inquiries
PO Box 16508
North Hollywood, CA 91605
USA

Editorial comments

I liked:

I disliked:

I would like to see:

For reader service inquiries, use other side

PO box address for
reader service cards only

MICRQ;
Reader Service Inquirie^1^^
PO Box 16508
North Hollywood, CA 91605
USA

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 38 LOS ALAMITOS. CA

POSTAGE WILL BE PAID BY ADDRESSEE

Computer Society of the ieee
Circulation Dept.
10662 Los Vaqueros Cir.
Los Alamitos, CA 90720-9970

II.I..II...I...I..I.III...I.I..I.I..I...III...I...II

THE COMPUTER SOCIETY
A member society of the Institute of Electrical and Electronics Engineers, Inc.

Executive Committee
President: Roy L. Russo*

IBM T.J. Watson Research Center
PO Box 218, Route 134

Yorktown Heights, NY 10598
(914) 945-3085

President-Elect: Edward A. Parrish, Jr.*
Vice Presidents

Education: Michael C. Mulder (1st VP)*
Technical Activities: Kenneth R. Anderson (2nd VP)*

Area Activities: Willis K. King*
Conferences and Tutorials: James H. Aylor*

Membership and Information: Merlin G. Smith1
Publications: J.T. Cain*

Standards: Helen M. Wood
Secretary: Duncan H. Lawrie
Treasurer: Joseph E. Urban

Past President: Martha Sloan*
Division V Director: Martha Sloan

Division VIII Director: H. Troy Nagle*
Executive Director: T. Michael Elliott1

'voting member of the Board of Governors
’non-voting member of the Board of Governors

Board of Governors
Term Ending 1987

Barry W. Boehm
Paul L. Borrill
Glen G. Langdon, Jr.
Duncan H. Lawrie
Susan L. Rosenbaum
Bruce D. Shriver
Harold S. Stone
Wing N. Toy
Helen M. Wood
Akihiko Yamada
Oscar N. Garcia*

Next Board Meeting
8:30 a.m.-5 p.m., June 19, 1987,
Chicago Marriott Downtown

Senior Staff
Executive Director: T. Michael Elliott
Editor and Publisher: True Seaborn

Director, Computer Society Press: Chip G. Stockton
Director, Conferences: William R. Habingreither

Director, Finance and Administration: Mary EllenCurto

Offices of the Computer Society
Headquarters Office

1730 Massachusetts Ave. NW
Washington, DC 20036-1903

General Information: (202) 371-0101
Publications Orders: (800) 272-6657
Telex: 7108250437 IEEE COMPSO

Publications Office
10662 Los Vaqueros Circle

Los Alamitos, CA 90720
Membership and General Information: (714) 821-8380

European Office
2 Avenue de la Tanche

B1160 Brussels, Belgium
Phone: 32 (2) 660-11-43
Telex: 25387 AVVAL B

Term Ending 1988
Mario R. Barbacci
Victor R. Basili
Lorraine M. Duvall
Michael Evangelist
Allen L. Hankinson
Laurel Kaleda
Ted Lewis
Ming T. Liu
Earl E. Swartzlander, Jr.
Joseph E. Urban

Purpose
The Computer Society strives to advance the theory and practice

of computer science and engineering. It promotes the exchange of
technical information among its 90,000 members around the world,
and provides a wide range of services which are available to both
members and non-members.

Membership
Members receive the highly acclaimed monthly magazine Com¬

puter, discounts on all society publications, discounts to attend
conferences, and opportunities to serve in various capacities. Mem¬
bership is open to members, associate members, and student mem¬
bers of the IEEE, and to non-IEEE members who qualify as affiliate
members of the Computer Society.

Publications
Periodicals. The society publishes six magazines (Computer, IEEE

Computer Graphics and Applications, IEEE Design & Test of Com¬
puters, IEEE Expert, IEEE Micro, IEEE Software) and three research
publications (IEEE Transactions on Computers, IEEE Transactions
on Pattern Analysis and Machine Intelligence, IEEE Transactions on
Software Engineering).

Conference Proceedings, Tutorial Texts, Standards Documents.
The society publishes more than 100 new titles every year.

Computer. Received by all society members, Computer is an
authoritative, easy-to-read monthly magazine containing tutorial,
survey, and in-depth technical articles across the breath of the com¬
puter field. Departments contain general and Computer Society
news, conference coverage and calendar, interviews, new product
and book reviews, etc.

All publications are available to members, nonmembers, libraries,
and organizations.

Activities
Chapters. Over 100 regular and over 100 student chapters around

the world provide the opportunity to interact with local colleagues,
hear experts discuss technical issues, and serve the local profes¬
sional community.

Technical Committees. Over 30 TCs provide the opportunity to
interact with peers in technical specialty areas, receive newsletters,
conduct conferences, tutorials, etc.

Standards Working Groups. Draft standards are written by over 60
SWGs in all areas of computer technology; after approval via vote,
they become IEEE standards used throughout the industrial world.

Conferences/Educational Activities. The society holds about 100
conferences each year around the world and sponsors many educa¬
tional activities, including computing sciences accreditation.

European Office
This office processes Computer Society membership applications

and handles publication orders. Payments are accepted by cheques
in Belgian francs, pounds sterling, German marks, Swiss francs, or
US dollars, or by American Express, Eurocard, MasterCard, or Visa
credit cards.

Ombudsman
Members experiencing problems — late magazines, membership

status problems, no answer to complaints — may write to the
ombudsman at the Publications Office.

Information
Use the Reader Service Card to obtain the following material:

• Membership information and application (RS #202)
• Publications catalog (proceedings, tutorials, standards) (RS #201)
• Periodicals subscription application/information for individuals

(members, sister-society members, others) (RS #200)
• Periodicals subscription application/information for organizations

(libraries, companies, etc.) (RS #199)
• List of awards and award nomination forms (RS #198)
• Technical committee list and membership application (RS #197)
• Directory of officers, board members, committee chairs, represen¬

tatives, staff, chapters, standards working groups, etc. (RS #196)

JQSSSS (D031359-166Q

jP^OMEGA
*(2031 359-1660

YOUR FUTURE...

1SS MHMrawinM

COMPLETE

OMEGA 13B7 BOMPlETt

pH AND
CONDUCTIVITY
HEUmtMFNT HANDBOOK
ANO ENOYCIOPFDIA

IF.VFl

■ -

OMEGA 1987

TEMPERATURE
MEASUREMENT HANDBOOK

ENCYCLOPEDIA ANO

THE NEW! FREE! 1987 OMEGA HANDBOOKS
AND ENCYCLOPEDIAS TELL YOU ALL!

• TEMPERATURE • PRESSURE • FLOW • pH • STRAIN • DATA LOGGING
• THERMISTORS • RTD’S • READOUT DEVICES

IN A HURRY FOR YOUR HANDBOOKS? DIAL

IHiJMISIIlMfflailH©,

(MDSD ©d)@°[MJgK] CIRCLE READER SERVICE NUMBER
OR SEND BUSINESS CARD
TO RECEIVE QUALIFICATION FORM.

One Omega Drive, Box 4047, Stamford, CT 06907
Telex 996404 Cable OMEGA FAX (203) 359-7700

Reader Service Number 1

©COPYRIGHT 1987
OMEGA ENGINEERING, INC.

